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Introduction 

• In the previous chapter, we used Laplace transform to obtain the 
transfer function models representing linear, time-invariant, physical 
systems utilizing block diagrams to interconnect systems. 

 
• In Chapter 3, we turn to an alternative method of system modeling 

using time-domain methods. 

 
• In Chapter 3, we will consider physical systems described by an 

nth-order ordinary differential equations. 

 
• Utilizing a set of variables known as state variables, we can obtain 

a set of first-order differential equations. 

 
• The time-domain state variable model lends itself easily to computer 

solution and analysis. 
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Time-Varying Control System 

• With the ready availability of digital computers, it is convenient to 
consider the time-domain formulation of the equations representing 
control systems. 

 
• The time-domain is the mathematical domain that incorporates the 

response and description of a system in terms of time t. 

 
• The time-domain techniques can be utilized for nonlinear, time- 

varying, and multivariable systems (a system with several input and 
output signals). 

 
• A time-varying control system is a system for which one or more of 

the parameters of the system may vary as a function of time. 

 
• For example, the mass of a missile varies as a function of time as 

the fuel is expended during flight 
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Terms 
• State: The state of a dynamic system is the smallest set of variables 

(called state variables) so that the knowledge of these variables at t 
= t0, together with the knowledge of the input for t  t0, determines 
the behavior of the system for any time t  t0. 

• State Variables: The state variables of a dynamic system are the 
variables making up the smallest set of variables that determine the 
state of the dynamic system. 

• State Vector: If n state variables are needed to describe the 
behavior of a given system, then the n state variables can be 
considered the n components of a vector x. Such vector is called a 
state vector. 

• State Space: The n-dimensional space whose coordinates axes 
consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state 
variables, is called a state space. 

• State-Space Equations: In state-space analysis, we are concerned 
with three types of variables that are involved in the modeling of 
dynamic system: input variables, output variables, and state 
variables. 
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The State Variables of a Dynamic System 

• The state of a system is a set of variables such that the knowledge 

of these variables and the input functions will, with the equations 

describing the dynamics, provide the future state and output of the 

system. 

• For a dynamic system, the state of a system is described in terms of 

a set of state variables. 
 
 
 

 

u1(t) 

 
u2(t) 

Input Signals 

y1(t) 

 
y2(t) 

Output Signals 

 
System 
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Dynamic System 

State x(t) 

State Variables of a Dynamic System 
 
 

x(0) initial condition 
 
 

 

u(t) Input y(t) Output 
 

  
 
 
 

The state variables describe the future response of a system, 
 

given the present state, the excitation inputs, 
 

and the equations describing the dynamics 
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1 1 

 

11 12 1n 

x 

The State Differential Equation 
The state of a system is described by the set of first-order differential 

equations written in terms of the state variables (x1, x2, .., xn) 
 

. 

x1 = a11x1 + a12 x2 + ... + a1n xn + b11u1 + ... + b1mum 

. 

x2 = a21x1 + a22 x2 + ... + a2n xn + b21u1 + ... + b2mum 

. 

xn = an1x1 + an2 x2 + ... + ann xn + bn1u1 + ... + bnmum 

dx 
x& =  

dt
 x  a a a x  

     b11....b1m u1  
d x2  = 

a21 
 

 

a22 a2n x2  + 

............ 

. 
 

dt .  . . . .     

  
xn  

 
an1 an2 ann 

  
n  

bn1  .... bnm 
um 

 

A x B u 
 

 

A :State matrix; B : input matrix 

. 

x = Ax + Bu (State differential equation) 

C : Output matrix; D : direct transmission matrix y = Cx + Du (Output equation - output signals) 

  
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Block Diagram of the Linear, Continuous Time Control System 
 
 
 
 
 
 
 
 
 
 
 

u(t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

. 

x(t) = A(t)x(t) + B(t) u(t) 

y(t) = C(t) x(t) + D(t) u(t) 

. 

x(t) 

+ 

+ 

 
A(t) 

D(t) 

 
dt 

 
B(t) 

+ 

x(t) y(t) 

+ 

 
C(t) 
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Mass Grounded, M (kg) 
Mechanical system described by the first-order differential equation 

 
 
 
 

Appied torque Ta (t) (N - m) 

Linear velocity v(t) (m/sec) 
 

Linear position x(t) (m) 
 

 

 

 

Fa (t) = M 
dv 

= M 
dt 

d 2 x(t) 
 

 

dt 2 

v(t) = 
1
 

M 

t 

 Fa 

t0 

(t)dt 

v (t) 

Fa(t) M 

x (t) 
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1 

Mechanical Example: Mass-Spring Damper 
A set of state variables sufficient to describe this system includes the 

position and the velocity of the mass, therefore, we will define a set of 

state variables as (x1, x2) 

x1 (t) = y(t) 

x2 (t) = 
dy(t) 

 
 

dt 

d 2 y 
M 

dt 2 
dx 

+ b 
dy 

dt + 
ky = u(t) 

M  2  

dt + 
bx2 

+ 
kx1 = u(t) 

dx1 

dt 
= x2 ; 

dx2 

dt 
= − 

b 
x − 

k
 

m 2 M 
x1 + 

M 
u 

 
k :Spring constant 

u(t) 

b 
K 

y(t) 

Wall friction   

 
M 
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  

.. . 

 
Example 1: Consider the 

previous mechanical 

system. Assume that the 

m y+ b y+ ky = u 

This is a second order system. It means it involves two integrators. 

Let us define two variables : x1 (t) and x2 (t) 

. . 

x1 (t) = y(t); x2 (t) = y(t); then x1 = x2 

system is linear. The . k b 1 

external force u(t) is the 

input to the system, and 

the displacement y(t) of 

x2 = − 
m 

x1 − 
m 

x2 + 
m 

u 

The output equation is : y = x1 

In a vector matrix form, we have 

the mass is the output.  .  0 1  0  
x1  =  

k
 b 

 x1  
+  

1 
u (State Equation) 

The displacement y(t) is  .  - -  x2
   

 

measured from the 

equilibrium position in the 

x 2  

y = 1 

           m m     
     m  

0
x1  

(Output Equation) x2 

absence of the external   

force. This system is a 

single-input-single-output 

The state equation and the output equation are in the standard form : 

. 

x = Ax + Bu; y = Cx + Du 

system. 0 1  0  
A =  

k b 
, B =  

1 
, C = 1 0, D = 0 

- - 
 m 

 
m  

    
   m  
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Electrical and Mechanical Counterparts 
 
 
 
 

 

Energy Mechanical Electrical 

Kinetic Mass / Inertia 

0.5 mv2 / 0.5 j2 

Inductor 

0.5 Li2 

Potential Gravity: mgh 

Spring: 0.5 kx2 

Capacitor 

0.5 Cv2 

Dissipative Damper / Friction 

0.5 Bv2 

Resistor 

Ri2 
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Resistance, R (ohm) 
 
 
 
 
 
 
 

 

Appied 

Current 

voltage v(t) 

i(t) 

v(t) = Ri(t) 
 

i(t) = 
1 

v(t) 
R 

v(t) 
 

R 

i(t) 
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L 
 

Inductance, L (H) 
 
 
 
 
 

Appied 

Current 

voltage 

i(t) 

v(t) 

v(t) = L 
di(t) 

dt 

i(t) = 
1 t 

v(t)dt 
t0 

v(t) 
 

L 

i(t) 
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C 
 

Capacitance, C (F) 
 
 
 
 
 
 
 

 

Appied 

Current 

voltage v(t) 

i(t) 

v(t) = 
1 t 

i(t)dt 
t0 

i(t) = C 
dv(t) 

 
 

dt 

v(t) 
 

C 

i(t) 
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iL 
L 

iC 

u(t) vC C R 

1 

Electrical Example: An RLC Circuit 
 

 

x1 = vC (t); x2 = iL (t) 
 = (1/ 2)Li 2 + (1/ 2)Cv 2 

L c 

x1 (t0 ) and x2 (t0 ) is the total initial 

energy of the network 

USE KCL at the junction 

i = C 
dvc 

c  dt 

= +u(t) − iL +
 

L 
diL 

dt 
= −RiL 

+ vc 

V
 

o 

The output of the system is represented by : vo = RiL (t) 
- 

dx1 

dt 
= − 

1
 

C 
x2 + 

1 
u(t) 

C 

dx2 

dt 
+ 

L 
x1 

− 
R 

x 

L 
2 

The output signal is then : y1 (t) = vo (t) = Rx2 
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0 - 

 

Example 2: Use Equations from the RLC circuit 
 

 1  
.  C  

 1    
 

x =  
 1 
   L 

 
R 

- 
L  

x + 
 
C 


 

0  

u(t) 

The output is 

y = 0 R x 

When R = 3, L = 1, C = 1/2, we have 
 

. 0 
x = 

1
 

- 2 
- 3


 

2 
x + 

0
 u 

 

y = 0 

   

3 x 
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G11(s) 

G12(s) 

G21(s) 

Signal-Flow Graph Model 
A signal-flow graph is a diagram consisting of nodes that are 

connected by several directed branches and is a graphical 

representation of a set of linear relations. Signal-flow graphs are 

important for feedback systems because feedback theory is concerned 

with the flow and processing of signals in system. 
 
 

 
Vf(s) 

 
 

R1(s) 

 
 
 

R2(s) 

G(s) 

 
 
 
 
 
 
 

 
G22(s) 

 
 (s) 

 

 
Y1(s) 

 
 
 

Y2(s) 

 

Read Examples : 2.8 - 2.11 
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 

Mason’s Gain Formula for Signal Flow Graphs 
In many applications, we wish to determine the relationship between an 

input and output variable of the signal flow diagram. The transmittance 

between an input node and output node is the overall gain between 

these two nodes. 

P = 
1
 

 k 

Pk  k 

Pk = path gain of k th forward path 

 = determinant of graph 

= 1- (sum of all individual loop gain) + 

(sum of gain of all possible combinations of two nontouching loops) 

- (sum of gain products of all possible combinations of these nontouching loops) + .. 

= 1-  La +  Lb Lc -  Ld Lc L f 
a b,c d,e,f 

 k = cofactor of the kth forward path determinant of the graph with the loops 

touching the kth forward path removed, that is, the cofactor  k 

by removing the loops that touch path Pk . 

is obtained from  



 

Signal-Flow Graph State Models 
 
 

-R/L 

 

 
G(s) = 

 
Vo (s) 

 

-1/C 

=
   

U (s) 

. 1 
s 2 + s +  
1 

x1 = − 
C 

. 1 

x2 + 
C

 

R 

u(t) 

x2 = 
L 

x1 − 
L 

x2 ; vo = Rx2 

Vo(s) 
 

 

U (s) 

R / LCs 2 
= 

1+ (R / Ls)+ (1/ LCs 2 )
; =

 

R / LC 20 

s 2 + (R / L)s + (1/ LC ) 

1/C 1/s 1/L R 

U(s) 
x1 

1/s 
x2 

vo 
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N 

 

 
Y (s) 

 
sm + bm−1sm−1 

 

+ .... + b1s 

 

+ bo 
G(s) = = 

U (s) sn + an−1 s
n−1 

+ .... + a1s + ao 

Y (s) s −(n−m) + bm−1s −(n−m+1) + .... + b1s 
−(n−1) + bos −n 

G(s) = 

 
G(s) = 

U (s) 

Y (s) 

U (s) 

= 

 

= 
k 

1+ 

Pk k 

 

an−1 s −1 
+ .... + a1s −(n−1) 

+ ao s −n 

G(s) = k Pk 
= 

Some of the forward - path factors 

q=1 
Lq 1- sum of the feedback loop factor 1−  
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0 

Phase Variable Format: Let us initially consider the fourth-order 
transfer function. Four state variables (x1, x2, x3, x4); Number of 

integrators equal the order of the system. 
U(s) 

1/s 1/s 1/s 1/s 

x4 
x3 x2 x1

 

 
 

 
Y(s) 

 
 

1 1/s 1/s 1/s 1/s bo
 

 

U(s)  
-a3 

x4 
x3 

-a2 

-a1 
x2 -a 

x1
 

Y(s) 

 

G(s) = 
Y (s) 

=
 

U (s) 

 
s 4 + 

 
a3s

3 

b0 

+ a2 s 2 

 
+ a1s 

 
+ a0 

= 
b0 s −4 

 

1+ a3s −1 + a2 s −2 + a1s −3 + a0 s −4 



 

x 

 

b3 

b1 

2 

1 1/s 1/s 1/s 1/s bo
 

 

U(s) x4 

-a3 

 
-a2 

x3 -a 

. . 

x2 
x1 

-a0 

. 

Y(s) 

b s3 + b s 2 + b s + b x1 = x2 ; x2 = x3 ; x3 = x4 

G(s) = 3 2 1 0  

s 4 + a3s
3 + a2 s 2 + a1s + a0 

. x = −a x 
 
− a x − a x 

 
− a x + u 

b s −1 + b s −2 + b s −3 + b s −4 
4 0  1 1 2 2   3 3 4 

= 3 

− 

2 1 0 y(t) = b0 x1 + b1x2 + b2 x3 + b3 x4 

1+ a3 s 1 + a2 s −2 + a1s −3 + a0 s −4 
x1  0 1 0 

d 

x2 

 
0 0 1 

0 x1  
0 


x2 

 0  

0 

 
     =    +  u(t) 
dt x3 

 0 0 0 1 x3 
 0  


x 

 

- a - a - a - a 


x 

   

Read Examplev 3.1 of the textbook 
         4   0 1 2 3 

x1  

x2 

 

 4   1 

y(t) = Cx = b0 b1 b2 b3   
x3 


23

 

  

b 

1 



 

         4  



 

G  (s) = 
5(s +1) 

c (s +1) 

16 

(s
(
+
s + 3

2
) 
)
 

Alternative Signal-Flow Graph State Models 
Motor and Load 

 

Gc (s) = 
5(s +1) 

 
 

(s + 5) 

5 

1 
 

 

(s + 2) 

6 

(s + 3) 

 

1 1/s 5 1 1/s I (s) 6 1/s 1 

R (s) U (s) 

-5 -2 -3 

Y (s) 

- 3 6 0  0 
. = 


0 - 2 - 20


x + 


5

 r(t) y = 1 0 0x 

x 
    

0 0 - 5 1  24
 

R(s) Y(s) 

U(s) I(s) 

 
Controller 



 

The State Variable Differential Equations 

1/s 

1 
-5 

1 1/s 

1 

1/s 

-20 

 
-20 

 
30 

 

 
 

Y(s) 
 

 

R(s) 

 

 
 

= T (s) = 

-3 

 
30(s +1) 

 
 

(s + 5)(s + 2)(s + 3) 

Diagonal form or Canonical form 

 

= 
q(s) 

(s − s1 )(s − s2 )(s − s3 ) 

Y(s) 
 

 

R(s) 
= T (s) = 

k1 +
 

(s + 5) 

k2 +
 

(s + 2) 

k3 
 

(s + 3) 

k1 = −20, k2 = -10, and k3 = 30 

- 5 0 0  1 
. = 


0 - 2 0 

 
x + 


1
 

r(t); y(t) = - 20 -10 30x 
x 

    

0 0 - 3  1 
25 



 

The State Variable Differential Equations 
 

- 3 6 0 0 .     
x = 0 

0 

- 2 - 5 

0 - 5 

x + 5 

1  

r(t) 

Y(s) 

R(s) 
= T (s) = 

30(s +1) 

(s + 5)(s + 2)(s + 3) 
= 

q(s) 

(s − s1 )(s − s2 )(s − s3 ) 

Y(s) 

R(s) 
= T (s) = 

k1 +
 

(s + 5) 

k2 +
 

(s + 2) 

k3 
 

(s + 3) 

k1 = −20, k2 = -10, and k3 = 30 

- 5 0 0  1 .     
x = 0 - 2 0  x + 1 r(t) 

0 0 - 3  1 

y(t) = - 20 -10 30x 26 
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The Transfer Function from the State Equation 
Given the transfer function G(s), we may obtain the state variable equations 

using the signal-flow graph model. Recall the two basic equations 
 

. 

x = Ax + Bu 

y = Cx 

 

 
y is the single output and 

u is the single input. 

sX (s) = A X (s) + BU (s) Take the Laplace transform 

Y (s) = CX(s) 

(sI − A) X(s) = BU (s) 

Since sI - A−1
 =  (s) 

X (s) =  (s) B U (s) 

Y (s) = C  (s) B U (s) 

G (s) = 
Y (s) 

U (s) 
= C  (s) B 
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 k 

   

Exercises: E3.2 (DGD) 
A robot-arm drive system for one joint can be represented by the differential equation, 

 

dv(t) 
 

 

= −k v(t) − k y(t) + k i(t) 

dt 
1 2 3 

where v(t) = velocity, y(t) = position, and i(t) is the control-motor current. Put the equations 

in 
d
sta
y
te variable form and set up the matrix form for k1=k2=1 

v = 
dt 

dv 
= −k v(t) − k 

 
 

y(t) + k i(t) 

dt 1 
d  y  0 

2 3 

1  y  0  
  = 

dt  v  

− k2 

 
- k1  

 +  i 
  3  

Define u = i, and let k1 = k2 = 1 
. 0 1 0   y  

x = Ax + Bu; A = 
-1 -1

, B =  , x 
3  

=   

 v  

v 

k 
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3 

  

 
1

 +1) 
 

1 

E3.3: A system can be represented by the state vector differential 

equation of equation (3.16) of the textbook. Find the characteristic 

roots of the system (DGD). 

. 

x = Ax + Bu A = 

 

  

0 

−1 

1 

-1

 

-1  

Det (I - A) = Det   
 

 
(  

= ( +1)+1 = 2 +  +1 = 0 
 

1 = − 
2 

+ j 
2 

; 2 = − 
1 

− j 
2 2 

3 
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  

E3.7: Consider the spring and mass shown in Figure 3.3 where M = 1 

kg, k = 100 N/m, and b = 20 N/m/sec. (a) Find the state vector 

differential equation. (b) Find the roots of the characteristic equation for 

this system (DGD). 

. 

x1 = 

. 

x2 = 

x2 

−100x1 

 
− 20x2 + u 

.  0 1  0 x = 
-100 - 20

 x +
 

1 
u 

 

Det 

 

(I - A) = Det 
 

 
   

-1  
= 2 

 
+ 20 

 
+100 


100  + 20


 

= ( +10)2
 = 0; 1 = 2 = -10 
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 
1 

  

 

E3.8: The manual, low-altitude hovering task above a moving land deck 

of a small ship is very demanding, in particular, in adverse weather and 

sea conditions. The hovering condition is represented by the A matrix 

(DGD) 
0 

A = 

0 

1 0 

0  

0 - 5 - 2  
 

 -1 0  

Det(I - A) = Det

0  -1 

 
= 

(2 

 
+ 2 + 5))= 

0 

0 

5  = 2 

1 = 0; 2 = -1+ j2; 3 = -1- j2 
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1 
 

 

0  

 

 

E3.9: See the textbook (DGD) 
 

. 

x1 = 

. 

1 

2 
x2 − x1 

x2 = −x1 − x2 

-1     
x =  

 

1/2 

- 3/2 


x, y 

 
= 1- 3/2x 

s2 + 
5 

s +1 = 
2 

(s + 2)
 
s + 

1 
 

 2  
. 

= 
− 2 

0  
z; y = - 0.35 -1.79z 

z  
-1/2


 

= 0 
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 0 

 

R 

 

P3.1 (DGD-ELG4152): 

Apply KVL 

v(t) = Ri(t) + L 
di

 
dt 

+ +vc 

vc = 
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(a) Select the state variables as x1 

(b) The state equations are : 

= i and x2 = vc 
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State Transition Matrix  
 

 

 We start with a State Transition Matrix. So, what is meant by State Transition Matrix? 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If you see a classical system the classical system here is a involvement of a plants say G 

of s we are we are applying input and we are getting a output. So, impede input is 

applied at t equals to 0, and we are expecting that the output as certain time interval say 

output say at say t equals to say 10 second. Now, this is the step input and now is a 

output. So, here output we have got at t equals to 10 second. 

 
But, in case of a state space system along with this output there are states which are the 

important parameter in the system, that has been also traveled that is from t equals to 0 to 

t equals to f the state has been transferred. So, this transferring of the states we can we 

can say that state transition matrix. 

 
Now, how will you define the state transition matrix? It is defined as the transition of 

states from initial time t naught to any time t or a final time tf when the inputs are zero, 



that is this trans state transition matrix has not concerned with the any type of input it is 

concerned with the some initial state that the t 0 to tf. Now, you see what are the 

significant, means say what are the importance of these state transition matrix. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The first point it is defined as the solution of linear homogeneous state equations. We 

have seen last time, the X dot equal to A X X of t equal to e raised to A t X naught. So, 

this is e raised to A t is called state transition matrix and this is a homogeneous state 

equations. 

 

It is response due to initial vector X naught it is response due to initial vector X naught 

here this is what, but if you consider a first system like this X dot equals to AX plus BU. 

So, here we will get X of t equal to e raised to A t X naught plus 0 to t some values will 

get here coefficient will get and we written d of t. 

 

So, in this particular case this is u of t it has been taken care by X naught only whereas, if 

you take this part this portion that is a force portion force part in this particular part there is 

there is no involvement of X naught. So, therefore, what we are saying here it is dependent 

on the initial state vector not the input. The input is concern with the force part only, this part 

state transition matrix is concerned with only X naught. So, it is called as zero input response 

since input is 0, and whereas, if you take the force part this is called as zero state response. 

Here in this particular force part there is no initial state has been involved, but as far as now, 

we are discussing about the state transition matrix it is 



concern with the zero input response because this portion e raised to A t into X naught 

this portion, there is no input. 

 

It is called as a free response of the since the response is excited by the initial condition 

only, that is due to initial conditions the state has been transferred and this is called state 

transition matrix. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, we have to see a few properties of this state transition matrix. Say phi of t equal to 

e raised to A t that is a state transition matrix, and now we have to pre prove this phi of 0 

equal to I this is a first part first property. So, how do you get I, identity matrix? So, in 

this particular equations, that is phi of 0 we replace we will get identity matrix. 

 

Now, the second properties, we have to prove phi of minus t equal to phi of minus t that 

is phi inverse of minus t equal to phi of minus t. Now, how will you prove this one? So, 

now, we start with the same equation phi of t equal to e raised to A t. Now, through this 

equation we wow, post multiply by e raised to minus t, that is what we have to do to this 

equation we have to multi post multiply by e raised to minus A t. 

 

So, after post multiplication what we will get? We will get phi of t to e raised to minus at 

equal to e raised to A t into e raised to minus at this is post multiplications, that is phi of t 

multiplied by e raised to minus at here e raised to A t multiplied by e raised to minus at 

we will get a anti matrix. So, now, our main purpose is to get phi inverse of t, equal to 



phi of minus t. Now, what we will do? We will pre multiply both side by phi inverse of t. 

So, what we will get? So, if you multiply this phi inverse of t into phi of t to e of e raised 

to minus at, so phi phi inverse of t, that is I. So, this is cancelled; what we will get e 

raised to minus at equals to phi inverse of t. 

 

So, e raised to minus at equals to phi inverse of t now, this if the phi of minus t equal to e 

raised to minus at just like phi of t equals to e raised to plus at, but if you say phi of 

minus t equal to e raised to minus A t. Now, if you see this equation say 1, you can say 

this equation 2, if you compare these equations, so what we will get? We will get phi of 

phi inverse t equals 2 phi of minus t, this is a second property. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, we see the another property, then another property is phi of t 2 minus t 1, phi of t 1 

minus t 0 that is equal to phi of t 2 minus t 0, phi of t 2 minus t 1, phi of t 1 minus 0 

equal to phi of t 2 minus t 0. 

 

Now, this we can express through a diagram. Now, here on point this one, is a another 

point here. Now, here X of t 0 and now here is X of t 1. Now, the state has been 

transferred from X of t 0 to t 1. So, that has been represented by phi of t 1 minus t 0 then 

same state. Now, you see take X of t 2, t 2. Now, here also the state has been transferred 

form X of t 1 to X of t 2 so it has been represented by phi of t 2 minus t 1. 



Now, you just see this phi of t 2 minus t 1 phi of t 1 minus t 0 equals to phi t 2 minus t 0 

that is this particular portion, phi of t 2 minus t 0. Now, we have to prove this part 

mathematically. How will you prove this? So, here phi of t 2 minus t 1 phi of t 1 minus t 

0, now, you have to solve this. So, this is also a transition matrix state transition matrix. 

So, it has been represented by e raised to a t 2 minus t 1 you see this portion this part. 

 

And about this phi of t 1 minus t 0 it has been written by A of t 1 minus t 0. Now, we 

solve this one. So, we can write down as e of A t 2 to A of minus A into t 1 that is 

manipulations e of A into t 1 multiplied by minus A into t naught. Now, you see here e 

of minus A t 1, minus A t 1 this will be cancelled. So, what we will get? E of a t 2 minus 

t 0 and that is nothing, but phi of t 2 minus t 0. Now, we have prove this part. 

 

So, your transition for state from t 0 to t 1, t 1 to t 2, but it may possible that the state at 

X equal to t 2 may transferred to X equals to say t 3 that means, X equal to t 3 that is it 

can be represented by a phi of t 3 minus t 2. Now, how do you express this through state 

transition matrices? That is phi of t 3 minus t 2, phi of t 2 minus t 1, phi of t 1 minus t 

naught, that is equal to phi of t 3 minus t naught that is you see here phi of t 3 minus t 2 

this one, phi of t 2 minus t 1, then phi of t 1 minus t 0 and this is a complete part is the 

involvement of phi of t 3 minus t naught. 

 

So, similarly more state elements we can add it and we can express these in terms of 

state transition matrix. 

 

(Refer Slide Time: 12:48)  



Now, the next properties say phi of t say raised to m equal to phi of m into t. So, in this 

case m is any positive integer. Now, this we have to prove. So, now, this phi of t raised 

to m. So, phi of t is nothing, but e raised to A t let us say m equals to 2 that means, e 

raised to A t multiplied by e raised to A t. Now, here m is there that means, e raised to A 

t has been written in terms of m times. Therefore, this equation we can write down as e 

raised to A t multiplied by e raised to A t e raised to A t up to e raised to A t. 

 

And now up to how much terms we have to write? This we have to write m times, see 

here if phi of t raised to m e raised to A t e raised to A t m times. So, this we can write 

down as e how much time is a m into A into t, m into A into t and now we seen that this 

X t equals to e raised to t X naught. So, this is written as phi of t. So, here this can be 

written as phi of m into t here m term has been added therefore, this results has been 

proved. 

 

So, these are the properties of the state transition matrix. Sometimes when we are doing 

the analysis of the system and many states are involved this type of properties can be 

useful. Now, the point has come this e raised to A t is there so that means, whenever 

required state transition matrix we have to calculate e raised to A t. Now, how to 

calculate it? So, if you see the literature there are various methods are available. So, 

these methods are useful to calculate the state transition matrix then we see the various 

methods for determination of state transition matrix. 

 

(Refer Slide Time: 15:27)  



So, first one is Power Series method, Laplace transform method, Diagonalization method 

and Cayley-Hamilton method. So, these 4 methods can useful to get the state transition 

matrix. If you take a any example then apply this 4 method you will get the same results 

but now which method to be applied. So, this depends upon the type of systems. If you 

see the power series method we will see it, but you will find that as a order increases 

calculation is quite difficult and sometimes if we do not know whether we getting we 

will get result or not. This Laplace transform method is based on a s domain and Laplace 

is very important tool. Therefore, we will find that the Laplace transform method is quite 

useful. 

 

We are already seen this approach earlier to get the state equation, that is X dot equals to 

AX X of t equal to e raised to A t into X naught and now these phi of t equal to e raised 

to A t equals to Laplace inverse of SI minus A inverse. By means of this we can 

calculate this state transition matrix using Laplace transform method that is you have 

take sI minus A inverse. 

 

Now, the diagonalization method, this method is based on the concept of converting the 

given system matrix into the diagonal form and in this case there is need to go for the 

model matrix. So, if you see the calculation wise this method is quite cumbersome, but 

Laplace transfer is quite better. 

 

Now, the next is Cayley-Hamilton theorem this is a very important theorem and it has 

wide applications. So, we will find that this method is also useful in getting the state 

transition matrix. Now, we will see through, but this is the method we already seen only, 

so method which we have to see power and diagonalization and Cayley-Hamilton 

theorem. Now, we start with power series method. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, we start with power series method. So, here we start with X dot equal to AX or this 

we can write down as X dot t equal to A into X of t. And here X of t state equation equal 

to e raised to A t into X naught and here this e raised to A t that is equal to I, A into t A 

square into t square factorial 2 plus A cube t cube factorial 3 and this processor. Now, we 

have to prove this. Why? The state transition matrix e raised to A t equals to this way. 

 

Now, we start doing it. So, first of all what we will do we will assume that say X of t 

equal to C 0 plus C 1 t plus C 2 t square plus say C k into t raised to k X of t. Now, we 

are concerned with the X dot t. So, here X dot t equal to A into X of t, now if you see X 

dot t so now, differentiate these equations. So, if you differentiate X dot t this term of C 

0 will not present. So, terms of C 1 C 2 up to C k will be present therefore, we write the 

equation as this is C 1 plus this depression of these 2 into C 2, 2 say 2 into C 2 2 into t 

plus 3 C 3 into t square and this process repeated that is s C through C 3 is there. 

 

So, here C 3 t cube means 3, 3 C 3 into t square equal to A into X of t. So, we can write 

down as A into X 0 C 0 C 1 t C 2 t square like this or we can write C 3 t cube. So, these 

terms we have got and now our main purpose is to get this result. So, what we can do? 

Means in what way we imposes. So, we can see that we can compare the various terms 

of t and some somewhere we can achieve the result. 

 

So, please see it. So, now, what we will do comparing the coefficients of t. Now, you 

compare the coefficient of t. So, now, see here, for if see that the term t raised to 0. So, 



you will find that t raised to 0 means 1. So, here for this it is C 1 and here is A into C 

naught. Similarly we compare that terms t raised to 1. So, here that is t. So, we can write 

down as see here t raised to 1, 2 C 2, so 2 C 2. Now, here we find A into C 1 into t’s. Just 

see here A 1 C 1 into t, so we can write down as A into C 1. So, from this we can write 

down as C 2 equal to a by 2 into C 1 C 2 equals to a by 2 into C 1. But we know C 1; 

what is C 1? The C 1 is A into C naught. So, we replace the value of C 1 in this equation. 

So, we will get C 2 equal to A by 2 into A into C naught equal to A square by 2. So, we 

can write down as a factorial 2 into C naught. 

 

So, why are your factorial, we will see later on. Now, here we have compare the 

coefficient of t 1. Now, similarly we have to compare the coefficient of t 2. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

So, if you compare the coefficient of t 2 we will get 3 C 3 into A into C 2, so here 3 C 3 

into A. Now, 3 C 3 into a what is C 2? C 2 we are already got A square factorial 2 into C 

naught. So, we replace these values here. So, you will can write A square by 2 into C 

naught. 

 

Now, we have got A square by 2 C naught, but you know if we know also C naught. So, 

C naught is, so you will find that that C naught is no value. So, we can keep like this 

only. So, we can write down as this C 3 equal to 3 we will take this side and we will get 

a A cube into C naught, so here we can write down this as 6 into A 3 into C naught and if 

you write this as this as a factorial 3 that is 3 into 2, 6 A cube into C naught. 



Now, similarly we have to push it further. Suppose if you replace, if you replace t equals 

to 0 in equation of X of t that is X of t equals to C 0, C 1 t C 2 t square plus C k into t k. 

So, you will get X of 0 equal to C naught. So, now, we have got the value of X naught C 

0, C 1, C 2, C 3 assume that we got up to C k. Now, we replace all this element in the 

given equations and now we will see what results we will get that is X of t equal to C 0, 

C 1 t plus C 2 t square up to C k into t k. 

 

So, we have got all values of C 0, C 1, C 2, C into C k into t k. So, you can also find this 

process A equals C 0, C 1, C 2 into C 3 into t cube this portion and we have got all 

values and now we try to replace. So, if you replace it C 0, what is the value of C 1? C 1 

you will find you get C 1 equals to A into C naught, C 2 equals to A square factorial into 

C naught and C 3 equal to 1 by factorial 3 A cube into C naught. 

 

So, we replace these values and we will find C 0 into A into C 0 into t plus C 2 A square 

factorial 2, C 0 into t square plus A cube factorial 3 C 0 into t cube and this process 

repeated and we will find that this is 3 our terms are up to k. So, we have 1 by a factorial 

k into A raised to 3. So, k, so we a raised to k into t raised to k. 

 

Now, we will find that in all these cases in all these cases the term C 0 is common. So, 

we will take C 0. So, we can write down I plus A into t A square factorial 2 into t square, 

A cube factorial 3 into t cube plus 1 by factorial k a raised to k into t k. So now, we have 

got this one. Now, what is the X of t? So, X of t is equal to e raised to A t into X naught. 

And what is a X naught? This X naught we are already calculated as C naught and 

therefore, this is e raised to A t into C naught and therefore, if you compare this equation 

this is the same equation. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, here e raised to A t is nothing but this part that means, we can write down e raised 

to A t equal to I plus A into t plus A square t square factorial 2 plus A cube t cube 

factorial 3 and like this A k t k factorial k. Now, this is the direct formula. So, by means 

of this formula we can easily get the state transition matrix. 

 

So, in that case what is the input is available to you input is available to is A, A matrix. 
 

So, you replace the A matrix and solve it we can get the result. 

 

(Refer Slide Time: 28:06)  



Now, we try to solve one example. Suppose if you are taking a matrix equal to minus 2, 

1, 0, minus 2. And we want to determined we have to determine the state transition 

matrix e raised to A t by means of power series approach. So, here e raise to A t equal to 

same formula we write is I, A into t plus A square t square factorial 2 and like this. 

 

Now, here you find that we will get A, A square, A cube it means that we have to 

calculate a many multiplications, multiple multiplication has to be solved and we will 

find out do this calc to do these calculations or to carry out this calculation sometimes it 

is quite cumbersomes. 

 

Just we see here suppose if you take A is like this same thing minus 2, 1, 0, minus 2. 

Now, we have to determine A square, so A square is minus 2 1 0 minus 2 here minus 2 1 

0 minus 2 and if you solve this one you will get 4 minus 4 0 into 4 and we have got A 

square, similarly you can get A cube A cube equals to A into A square. 

 

So, we have to solve you get some values and finally, you have to replace in these 

particular equations. So, you will find that there are some terms. So, everywhere these 

terms are added and finally, if you get e raised to A t as e raised to minus 2 t t into e 

raised to minus 2 t 0 e raised to minus 2 t. That means what you do? You have to 

determine A square, A cube, A 4 like this they replace these values. 

 

(Refer Slide Time: 30:24)  



And from this same expression taking different elements we will get e raised to minus 2 t 

2 t, that is e raised to minus 2 t portion is nothing but 1 plus minus 2 t plus 1 plus 

factorial 2 minus 2 t square plus factorial 3 minus 2 t whole cube. This is e raised to 

minus 2 t. Similarly we will get t e raised to minus 2 two t 0 e raised to minus 2 t. So, 

this is very simple calculations you can easily do it. 

 

But here the main intention of this example is that sometimes it may not possible that 

you can get a similar type of results that is instead of minus 2 sometimes we get 4, it may 

get 7. In that case to make these elements or make adjust this element by means of power 

series exam power series expansion is quite difficult. Therefore, as we increase the order 

we will not recommend this method to get the state transition matrix because calculation 

is quite difficult. That means, in that is case it is better to go for the Laplace transform 

approach or there are other approaches that is called Cayley-Hamilton theorem or 

diagonalization that also helpful, but this approach sometimes is quite difficult. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 

State-Space Representations of Transfer Function Systems 
 

 
 

 
 
 
 

1 State-Space Representation in Canonical Forms 
 

We here consider a system de ned by 
 

y
(n)

 + a1y
(n

  
1)

 + + an  1y + any = b0u
(n)

 + b1u
(n

  
1)

 + + bn  1u + bnu ;  
 

where u is the control input and y is the output. We can write this equation as  

Y (s) = b0s
n
 + b1s

n
  

1
 + + bn  1s + bn :  

U(s) s
n
 + a1s

n
  

1
 + + an  1s + an 

 
 

 
(1) 
 
 
 
 
(2) 

 
Later, we shall present state-space representation of the system de ned by (1) and (2) in 
controllable canonical form, observable canonical form, and diagonal canonical form. 

 

1.1 Controllable Canonical Form 
 

We consider the following state-space representation, being called a controllable 
canon-ical form, as 

2
 x2 3  

2
 0  0 1 : : : 0  

3 2
 x2 3  203      

6 

x1 

7 

 

6 

0  1 0 : : : 0  

7 6 

x1 

7 

 0 

7 

     

 ..
. 

= ..
.  ..

. 
..

. 

.
. . ..

.   ..
. + 

6
...  u   (3) 

6
x n  1 7  6 0  0 0 : : : 1  7 6x n  1 7  

6
0 7      

6  7  6         7 6  7  6 7      

6 x 
n 

7  6 a 
n 

a a 
n  2 

: : : a 
1 

7 6 x 
n 

7  6
1 7      

6 
  

7 
 

6 
 

n  1 
   

7 6 
  

7 
 

6 7 
     

4    5  4         5 4     5  4 5    

3 
  

                      2 x2   

    

y = (bn 

           

a1b0) 
6 

x1 

7 

  

     anb0)  (bn 1
a

n 1
b

0
) 

: : :  (b1  ..
. + b0u (4) 

                      6x 
n 

7   
                      

6 
 

7 
  

                      4   5    
Note that the controllable canonical form is important in dicsussing the pole-
placement approach to the control system design. 
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1.2 Observable Canonical Form 
 

We consider the following state-space representation, being called an observable 
canon-ical form, as 
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1.3 Diagonal Canonical Form 
 

We here consider the transfer function system given by (2). We have the case where 
the dominator polynomial involves only distinct roots. For the distinct root case, we 
can write (2) in the form of 

 

Y (s)  
= 

b0s
n
 + b1s

n
  

1
 +   + bn  1s + bn  

U(s) (s + p1)(s + p2)   (s + pn) 
 

  

  

= b0 + 

c1 

+ 

c2 

+   + 

cn 

:   s + p1 s + p2 s + pn  

 

(7) 

 

(8) 

 
The diagonal canonical form of the state-space representation of this system is given by 
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2 Numerical Examples 
 

Example 1: Obtain the transfer function of the system de ned by the following state-
space equations: 

2
x2 3 = 2 0 0 1 3 2 

x
2 3 + 2 0 3 u ; (11) 

x1   

4 

0 1 0  x1    0    

4
x3

5 
 6 11  65 4x35  415   

     2 x1 3          
      

5 : 
        

 y = 1 0 0 4x2        (12) 

      
x

3            
 

Solution: From (11) and (12), we determine the following parameters: b0 = 0, b1 = 0, 

b2 = 0, b3 = 1, a1 = 6, a2 = 11, a3 = 6. Thus, the resulting transfer function is 
 

 Y (s) 1  

G(s) = 

  

= 

 

: U(s) s
3
 + 6s

2
 + 11s + 6 

 
 

Example 2: Find the state-space representation of the following transfer function sys-
tem (13) in the diagonal canonical form. 

 

G(s) = 
2s + 3 

: (13) 
  

2  

 s + 5s + 6   
 

Solution: Partial fraction expansion of (13) is     

 2s + 3 

= 

A 

+ 

B 

: 

    

 

 s
2
 + 5s + 6 s + 2 s + 3 

 
Hence, we get A = 1 and B = 3. We now have two distinct poles. For this, we can 
write the transfer function (13) in the following form: 

x2 = 0  3  x2  +  1  u (14) 
x

1 

y = 
2  0 

x2 

x
1    1    

 1 3         (15) 

      
x
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Example 3: Obtain the state-space representation of the transfer function system (16) 
in the controllable canonical form. 
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Solution: From the transfer function (16), we obtain the following parameters: b0 = 1, 

b1 = 3, b2 = 3, a1 = 2, and a2 = 1. The resulting state-space model in controllable 
canonical form is obtained as 

 

 x1  0  1 x1 
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 x2   = 1  
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x
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(18)    x2    
Example 4: Consider the following state equations:     

x1 = x2 (t) ;          (19) 

x2 = x3 (t) ;          (20) 

x3 = 6x1(t)  11x2(t) 6x3(t) + 6u(t) ; (21) 

y = x1 (t) ;          (22)  
 

and determine the controllable canonical form. 
 

Solution: Using the state equations (19), (20), (21), and (22), we write the following 
high order di erential equation:  

d3
 y(t) + 6 

d2
 y(t) + 11 

d
 y(t) + 6y(t) = 6u(t) : 

 
dt

3
 dt

2
 dt 

The state variables x(t) = y, x2(t) = y, and x3 = y. Hence, we get   

x1 =x2(t) ;  

x2 =x3(t) ;  
 d3         

x3 = 

 

y(t) =  6y(t)  11y(t)  6y(t) + 6u(t) dt
3 

=  6x3(t)  11x2(t)  6x1(t) + 6u(t) : 

In matrix form, we have 2
 0 

 
1 

3
 x(t) + 

2
0
3

 u(t) ; x(t) = 0 
   

4 

0 1 0 

5 4 

0 

5    6 11 6 6  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

y(t) = 1 0 0 x(t) : 
 

Example 5: Consider the following state equations  

x1(t) = x1(t) + x3(t) + 4u(t) ; (23) 

x2(t) = 3x1 (t) + 2u(t) ; (24) 

x3(t) = 5x1 (t) + x2(t) + u(t) ; (25) 

y(t) =x1(t) ;  (26)  
4 



 
 
 
 

and determine the observable canonical form. 
 

Solution: Using the state equations (23), (24), (25), and (26), we write the following 
high order di erential equation: 

d3
 y(t) + 

d2
 y(t) + 5 

d
 y(t) + 3y(t) = 4 

d2
 u(t) + 

d
 u(t) + 2u(t) : 

 

dt
3

 dt
2

 dt dt
2

 dt 

We introduce x1(t) = y(t) in the equation, and collect all terms without di erentiation on 
the right hand side, we get  

3       2      
d 

        
d 

2    
d 

      
 d 

x1(t) + 
d 

x1(t) + x1(t) 
    

u(t)  u(t) =  3x1(t) + 2u(t) ; 
 

 3  2    

dt 
2   

dt      dt     dt           dt      

i.e., 
dt2 

x1 (t) +
 dt

x
1
(t) +

 
x

1
(t)  

dtu(t)  u(t)
#

 =  3x1(t) + 2u(t) : 
 

  dt"   

  d  d
2 

      d            d           

Now introduce the expression within the paranthesis as a new state variable  
             2      

d 
                

d 
  

     
x2(t) = 

 d 
x1(t) +   

x
1 (t) + 5x1(t)  4 u(t)  u(t) ; 

 
      2     

             dt  dt                dt  

i.e.,                                      

                x2(t) =  3x1(t) + 2u(t) :    (27) 

Repeating this precedure yields      
4u(t)

#
 = x2(t) 

       
       dt "dtx1(t) + x1(t)    5x1(t) + u(t) ; (28) 
       d   d                              
                                    

and we introduce                                  
                    d                   
               

x3(t) = 
 

 

x1(t) + x1(t)  4u(t) ; 
 

               dt  

i.e.,                                      

                x1(t) = x3(t)   x1(t) + 4u(t) : (29) 

From (27), (28), and (29), we de ne the state-space form of  
              x(t) = 

2 
3  0  0

3
 x(t) + 223  u(t) ;  

             

4 

1   0 1 

5 

  

4 

4 

5 

    

             5   1 0   1      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

y(t) = 1 0 0 x(t) : 
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Module 8: Controllability, Observability and 
Stability of Discrete Time Systems  

Lecture Note 1 
 
 
 
 
 

 

Controllability and observability are two important properties of state models which are 
to be studied prior to designing a controller. 

 

Controllability deals with the possibility of forcing the system to a particular state by 
appli-cation of a control input. If a state is uncontrollable then no input will be able to 
control that state. On the other hand whether or not the initial states can be observed from 
the output is determined using observability property. Thus if a state is not observable then 
the controller will not be able to determine its behavior from the system output and hence 
not be able to use that state to stabilize the system. 
 
 

1 Controllability 
 
Before going to any details, we would first formally define controllability. Consider a 
dynamical system 
 

 

X(k + 1) = AX(k) + BU(k) (1) 

Y(k) = CX(k) + DU(k)  
 

where A ∈ RN
×
N, B ∈ RN

×
M, C ∈ RP

×
N, D ∈ RP

×
M. 

 
Definition 1. Complete State Controllability: The state equation (1) (or the pair (A, B) ) is said to 

be completely state controllable or simply state controllable if for any initial state X(0) and any final 

state X(N ), there exists an input sequence U(k), k = 0, 1, 2, , N , which transfers X(0) to X(N ) for 

some finite N . Otherwise the state equation (1) is state uncontrollable. 
 

Definition 2. Complete Output Controllability: The system given in equation said to be 

completely output controllable or simply output controllable if any final output can be 

reached from any initial state X(0) by applying an unconstrained input sequence k = 0, 1, 2, , 
N , for some finite N . Otherwise (1) is not output controllable.  

 
(1) is  
Y(N) 
U(k), 
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1.1 Theorems on controllability 
 

State Controllability: 
 

1. The state equation (1) or the pair (A, B) is state controllable if and only if the n × nm 
state controllability matrix 

 

UC =  B AB A2B ...... AN−1
B 

 

has rank n, i.e., full row rank. 
 

2. The state equation (1) is controllable if the n × n controllability grammian matrix 

 
N −1 N −1 

WC =AIBBT (AI)T = AN−1−IBBT (AN−1−I)T 

I=0 I=0 

is non-singular for any nonzero finite N .  
 

3. If the system has a single input and the state model is in controllable canonical form 
then the system is controllable. 

 
4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form, the state 

model is controllable if and only if all the rows of B are nonzero. 
 

5. When A has multiple order eigenvalues and in Jordan canonical form, then the state 
model is controllable if and only if 

 
i. each Jordan block corresponds to one distinct eigenvalue and 

 
ii. the elements of B that correspond to last row of each Jordan block are not all zero. 

 

Output Controllability: The system in equation (1) is completely output controllable if 
and only if the p × (n + 1)m output controllability matrix 
 

UOC =  D CB CAB CA2B ...... CAN−1B 
 

has rank p, i.e., full row rank. 

 

1.2 Controllability to the origin and Reachability 
 

There exist three different definitions of state controllability in the literature: 
 

1. Input transfers any state to any state. This definition is adopted in this course. 
 

2. Input transfers any state to zero state. This is called controllability to the origin. 
 

3. Input transfers zero state to any state. This is referred as controllability from the origin 
or reachability.  
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Above three definitions are equivalent for continuous time system. For discrete time 
systems definitions (1) and (3) are equivalent but not the second one. 

 

Example: Consider the system X(k + 1) = AX(k) + Bu(k), y(k) = Cx(k). where 
 

A = 

−2 1 

, B = 

1 

and C = [0 1] 1 −2 1 
 

Show if the system is controllable. Find the transfer function 
Y

U (
(
z
z
)
)
. Can you see any 

connection between controllability and the transfer function?  

The controllability matrix is given by 
 

      1 −1    

   UC=[B AB]= 1 −1    

Its determinant  UC = 0 ⇒ UC has a rank 1 which is less than the order of the matrix, i.e., 2. 

Thus the system is not controllable. The transfer function    

G(z) = 

Y (z)  −1   z + 2   −1  −1  1 1  
  

= C(zI − A) 
 

B =[01] −1   z + 21 = 
 

 

 U (z)  z + 1 
 

Although state model is of order 2, the transfer function has order 1. The eigenvalues of A 

are λ1 = −1 and λ2 = −3. This implies that the transfer function is associated with pole-zero 
cancellation for the pole at −3. Since one of the dynamic modes is cancelled, the system 
became uncontrollable. 
 

 

2 Observability 
 

Definition 3. The state model (1) (or the pair (A, C) ) is said to be observable if any initial state 

X(0) can be uniquely determined from the knowldge of output y(k) and input sequence u(k), for k = 
0, 1, 2, , N , where N is some finite time. Otherwise the state model (1) is unobservable. 
 
 

 

2.1 Theorems on observability 
 

1. The state model (1) or the pair (A, C) is observable if the np × n observability matrix 

 

  
C  

CA 
  

U =

 CA2 

O 

  . 

  

 CAN−1 

has rank n, i.e., full column rank.  

  

SOLUTION: 
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2. The state model (1) is observable if the n × n observability grammian matrix 

N −1 N −1  

WO = (AI)T CT CAI = (AN−1−I)T CT CAN−1−I 

I=0 I=0  
 

is non-singular for any nonzero finite N . 
 

3. If the state model is in observable canonical form then the system is observable. 
 

4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form, the state 
model is observable if and only if none of the columns of C contain zeros. 

 
5. When A has multiple order eigenvalues and in Jordan canonical form, then the state 

model is observable if and only if 
 

i. each Jordan block corresponds to one distinct eigenvalue and 
 

ii. the elements of C that correspond to first column of each Jordan block are not all 
zero. 

 

2.2 Theorem of Duality 
 

The pair (A, B) is controllable if and only if the pair (AT
 , BT

 ) is observable. 
 

Exercise: Prove the theorem of duality. 
 

 

3 Loss of controllability or observability due to pole-zero 
cancellation 

 

We have already seen through an example that a system becomes uncontrollable when 
one of the modes is cancelled. Let us take another example. 

 

Example:      

 0 1  0 

u(k) X(k + 1)  = −1  −2  X(k) + 1 
y(k)  =  [1  1]X(k)   

The controllability matrix      
 

UC = 
0 1   

 1 −2   
 

implies that the state model is controllable. On the other hand, the observability matrix 
 

1 1 
U

O
=

 −1 −1  
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has a rank 1 which implies that the state model is unobservable. Now, if we take a different 

set of state variables so that, x¯1(k) = y(k), then the state variable model will be: 
 

 

x¯1(k + 1)  

x¯1(k + 2) 

 

 

= y(k + 1)  
= y(k + 2) = −y(k) − 2y(k + 1) + u(k + 1) + u(k) 

 

Lets us take x¯2(k) = y(k + 1) − u(k). The new state variable model is: 
 

 

x¯1(k + 1)  

x¯2(k + 1) 

 

 

= x¯2(k) + u(k)  
= −x¯1(k) − 2¯x2(k) − u(k) 

 

which implies 

¯ 0   1 ¯ 1 
, C=[1 0] A = −1  −2 ,  B = −1 

 

The controllability matrix  

¯ 1 −1 

UC= −1 1 
 

implies that the state model is uncontrollable. The observability matrix 
 

¯ 1  0 

UO=01 

 

implies that the state model is observable. The system difference equation will result in a 
transfer function which would involve pole-zero cancellation. Whenever there is a pole zero 
cancellation, the state space model will be either uncontrollable or unobservable or both. 
 

 

4 Controllability/Observability after sampling 
 

Question: If a continuous time system is undergone a sampling process will its 
controllability or observability property be maintained? 

 

The answer to the question depends on the sampling period T and the location of the 
eigenvalues of A. 
 

• Loss of controllability and/or observability occurs only in presence of oscillatory 
modes of the system. 

 
• A sufficient condition for the discrete model with sampling period T to be controllable 

is that whenever Re[λI − λJ ] = 0, |Im[λI − λJ ]| = 2πm/T for m = 1, 2, 3, ... 
 

• The above is also a necessary condition for a single input case. 
 

Note: If a continuous time system is not controllable or observable, then its discrete time 
version, with any sampling period, is not controllable or observable.  
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 Phase plane analysis for linear systems 
 
 
 
In this lecture we are going to talk about systems of two linear ODE of the first order in the form  

x˙ = a11x + a12y, 
(1) 

y˙ = a22x + a22y. 
 

  ⊤ 

Here I chose the notations x(t), y(t) for the unknown functions, and the independent variable is, as before, 
denoted by t, meaning “time.” Note that planar system (1) is a particular case of the general nonlinear system 
 

x˙ = f (x, y), 
(2) 

y˙ = g(x, y), 
 
where f, g ∈ C1(U ; R), U ⊆ R2, are given functions of two variables. The common point between (1) and (2) 

is that their right-hand sides do not depend explicitly on t. They, of course, depend on t through the variables 

x(t) and y(t), but t itself is absent. Such systems are called autonomous (cf. autonomous first order ordinary 

differential equations). 

Assume that system (2) (or (1)) has a solution x = x(t; x0), y = y(t; y0), where (x0, y0)
⊤

 are the initial conditions. 

We can consider this solution as a parametrically defined curve: for each time moment t we have two numbers (x, 

y) ∈ R
2
, which can be represented as a point on the plane xy. If we change t, the point position will change, but 

since x(t; x0) and y(t; x0) are differentiable, then the change will be small, and we actually obtain a smooth curve. 

Moreover, by increasing or decreasing t we move on xy plane along this curve. Such curve with the direction of 

time increase on it is called an orbit, or a trajectory of system (2) (or system  
(1)). Our task here is to analyze the structure of orbits of system (1) on the plane xy, which is called the 
phase plane. Since some of the properties of the orbits of (1) hold in the general case (2), I will start with the 
more general system. 

 
• If (ˆx, yˆ) are such that f (ˆx, yˆ) = 0 and g(ˆx, yˆ) = 0, then x = x,ˆ y = yˆ is a solution to (2), and the 

corresponding orbit is simply a point on the phase plane with coordinates (ˆx, yˆ). For the linear system  
(1) point (ˆx, yˆ) has to be a solution to 

 

0 = a11x + a12y, 

0 = a22x + a22y, 
 

i.e., a solution to a homogeneous system of two linear algebraic equations with the matrix 
 

  

A = a11 a12  . 
a21 a22 

 
This system always has solution (ˆx, yˆ) = (0, 0).  
det A = 0 then we have infinitely many solutions.  
will assume that det A = 0. 

 
This solution is unique if and only if det A = 0.  If In 

order not to complicate the following discussion I 

 
Such points (ˆx, yˆ) are called equilibrium points, or rest points, or stationary points, or critical points of 
system (2). Hence the assumption for (1) that det A = 0 is equivalent to saying that system (1) has only 
one equilibrium at the origin. 

 
• If x = x(t), y = y(t) is a solution to (2), then x˜ = x(t + c), y˜ = y(t + c) is a also a solution to (2) for any 

constant c.   
MATH266: Intro to ODE by Artem Novozhilov, e-mail: artem.novozhilov@ndsu.edu. Fall 2013 
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Proof. Note that if x(t), y(t) is a solution, then for the first equation in (2) it means that 
 

 dx 

(t) = f x(t), y(t) , 

  

 dt 
and since this is true for any t, it is true for t + c:  

 
 dx 

(t + c) = f x(t + c), y(t + c) , 

  

 dt 
which, due to the chain rule, can be rewritten as  

 
dx 

(t + c) = f x(t + c), y(t + c) , d(t + c)   
or, using new variable τ = t + c,  
 dx 

(τ ) = f x(τ ), y(τ ) . 

  

 dτ 
But since x(τ ) = x˜(t), y(τ ) = y˜(t), this exactly means that x˜(t) = x(t + c), y˜(t) = y(t + c) is a solution to  
(2). 

 
This simple and very important fact means that if x(t), y(t) is the solution to (2) with the initial condition 

x(t0) = x0, y(t0) = y0, then x(t + t0), y(t + t0) is the solution to system (2) with the initial condition x(0) = 

x0, y(0) = y0. From the geometric point of view it means that we can use different parametrizations to 
define the same curve on the phase plane. 

 
For the linear system we can prove this fact explicitly. Recall that any solution to (1) is given by eAt

V for 
some vector V ∈ R2. Now consider eA(t+c)V = eAt

U, where U = eAc
V, which is clearly a solution to the 

linear system. 
 

  
• Orbits do not intersect.  Suppose contrary:  there are two orbits  x(t), y(t)  and  x˜(t), y˜(t)  that pass  

through the same point (x0, y0) for different time moments t1 and t2: i.e., 
 

   (x0, y0) =  x(t1), y(t1)  =  x˜(t2), y˜(t2) .           
Since x˜(t), y˜(t)  is a solution, then, according to the previous property, x˜(t + (t2 − t1)), y˜(t + (t2 − t1)) 

is also a 
solution, which corresponds to the same orbit, but with a different time parametrization. On the 

             

other hand, the value of this solution at the point t1 coincides with the value of x(t), y(t) at the same 
    t 

2 
− 

t  )), y (̃t +(t  

2 
− 

t  ))  

point, which according to the uniqueness and existence theorem means that  x˜(t+(    1    1  
and x(t), y(t)  coincide, which yields that the existence of a common 

point f or tw o o rbits i mplies t hat  

           

these orbits 

coincide, hence no intersections.            

            
This property, as well as the previous one, is not true for non-autonomous systems. 

 

We obtained that the phase plane consists of orbits, which cannot intersect. It is impossible to depict all the 
orbits, but it is usually enough to draw only a few to get a general idea of the behavior of the solutions of 
system (2). In particular, it is always advisable first to plot equilibria. Several key orbits on the phase plane 
representing the general picture are called the phase portrait. It is usually quite difficult to draw the phase 
portrait of the general nonlinear system (2). For system (1), especially assuming that det A = 0, this problem 
can be solved completely, as I will show next. 
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 Phase portraits of linear system (1) 
 
There are only a few types of the phase portraits possible for system (1). Let me start with a very simple one: 
 

x˙ = λ1x, 

y˙ = λ2y. 
 
This means that the matrix of the system has the diagonal form 

A =  01 λ2  , 
  λ 0   

 
 

i.e., it has real eigenvalues λ1, λ2 with the eigenvectors (1, 0)⊤ and (0, 1)⊤ respectively. The equations are 

decoupled and the general solution to this system is given by 

y(t) = C1 0 e
λ

1
t
 + C2 1 eλ2t. 

x(t)  1  0  
 

 

Note that this is a fancy way to write that 
 

x(t) = C1eλ
1 t, y(t) = C2eλ

2
t. 

 
Now to figure out the behavior of the orbits (i.e., their qualitative form and the directions on them), we can 

argue as follows: Consider initially only special orbits corresponding to C1 = 0, ±1 and C2 = 0, ±1. First of all 
there is always the equilibrium (0, 0), which means that the corresponding orbit is a point at the origin. Next, 

take C1 = +1 and C2 = 0, which implies that x(t) = eλ
1 t and y(t) = 0. To get further information we need to 

specify the signs of λ1 and λ2. 
 

Case λ1 > 0 > λ2. I repeat that I consider the case C1 = 1 and C2 = 0. This corresponds to the line, whose 

direction is given by the first eigenvector V1 = (1, 0)⊤. If t → ∞ then x(t) → ∞ for λ1 > 0, hence the orbit 

constitutes the half line (x > 0, y = 0) with the direction from the origin to infinity (since also x(t) → 0 if t → 

−∞). Similarly, taking C1 = −1, C2 = 0 we will find that x(t) → −∞ if t → ∞ and x(t) → 0 if t → −∞ on the half 

line (x < 0, y = 0). Hence we fully described the orbit structure on the line corresponding to the direction of V1 

(see the figure below): There are three orbits there, two half-lines separated by the equilibrium at the origin, 

and on both half lines the direction is from the origin (the corresponding eigenvalue is positive). Now take C1 

= 0, C2 = ±1. In this case we find ourselves on the direction corresponding to V2 = (0, 1)⊤, i.e., on y-axis. We 

again have three orbits there, but the direction is reversed, we approach the origin along these orbits 

because λ2 is negative (see the figure below).  

What about the case C1 = 0 and C2 = 0? For both t → ∞ and t → −∞ one of the coordinate will approach 
infinity. Moreover, our intuition tells us that close orbits should behave similarly, therefore we do not have 
much choice as to obtain the orbit structure shown in the figure above. An equilibrium point for which we 
have two real eigenvalues, one is negative and one is positive, is called saddle.  

I actually was quite vague about why the orbits not on the axes have this particular shape. Here is a 
proof. We have, again, that 

 x(t) = C1eλ
1 t,   y(t) = C2eλ

2
t, 

or  
x 

 
y 

 
  = eλ1t, = eλ2 t.     

  C1 C2 

Raise the first equality to the power λ2 and the second equality to the power λ1. We find, by eliminating t, that 
 

λ2   λ1 λ2 
x 

= 
y  

=⇒ y = Ax 
 

, 
   

λ1 Cλ2 Cλ1 

1   2    
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Figure 1: Saddle. The case λ1 

corresponds to y-axis 

 
 

 V2 

y
 V

1 

 x 

>0>λ2. The first eigenvector corresponds to x-axis, and the second one  

 

where A is a new constant depending on C1 and C2. Since the eigenvalues have opposite signs, we find that 

orbits corresponds to “hyperbolas” 

y = Ax−γ , γ > 0, 
 
which we can see in the figure. By eliminating t we lost the information on the direction along the orbits. But 
since we already know the directions along the axes, we can restore it for our curves by continuity. 
 

Q: Can you plot a phase portrait of the system with the diagonal matrix A = diag(λ1, λ2) such that λ1 < 0 < 

λ2? What will be the difference with respect to the figure above? 
 

Case λ2 > λ1 > 0. Formally, we have exactly the same general solution 
y(t) = C1 0 e

λ
1
t + C2 1 eλ2t, 

x(t)  1  0  

 

but note that opposite to the previous case here for any choice of C1 and C2 (x, y) → (0, 0) if t → −∞, hence 
geometrically all the orbits represent curves coming out from the origin and approaching infinity as t → ∞. 

This is true in particular for the characteristic directions corresponding to the eigenvectors V1 and V2 (see the 
figure below, left panel).  

The subtle question is however how exactly orbits approach the origin for t → −∞. For this we recall that 
the equation for the curves on the plane is given by  

λ2 

y = Ax λ1 ,   

and since we assumed that λ2 > λ1 then we have 
 

y = Axγ , γ > 1, 
 
which corresponds to “parabolas,” i.e., to the curves that are tangent to the x-axis at the origin. Another way 

to see why x-axis is more important in this case is to note that when t → −∞, then eλ
2
t is much much smaller 

than eλ
1
t, hence it is the first eigenvector that plays the most important role. For t → ∞ the situation is 

opposite, since eλ
2 t is much much bigger than eλ

1
t and the second eigenvector shows the slope of the orbits.  

An equilibrium point for which we have two real eigenvalues of the same sign is called 
node. To obtain more intuition about how exactly the orbits approach the origin consider 
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Figure 2: Left: Node. The case λ2 > λ1 > 0. The first eigenvector corresponds to x-axis, and the second one 

corresponds to y-axis. Right: Node. The case λ1 < λ2 < 0. The first eigenvector corresponds to x-axis, and 
the second one corresponds to y-axis 

 

Case λ1 < λ2 < 0. Here the general solution shows that the direction on any orbits is from ±∞ to the origin 

as t goes from −∞ to ∞. Now however when t → ∞ eλ
2 t is much much bigger than e λ1

t and hence the orbits 

behave as the second eigenvector V2, whereas for t → −∞ the first eigenvector becomes dominant, and 
therefore the orbits far from the origin are parallel to the first eigenvector (see the right panel of the figure 
above). The same conclusion can be seen from the equation for the phase curves 
 

y = Axγ , 0 < γ < 1. 
 

It is a good exercise to consider two remaining cases λ2 < λ1 < 0 and λ1 > λ2 > 0. 

 

Case λ1 = λ2 < 0. To make our discussion full, consider also the case of equal negative eigenvalues for 

the diagonal matrix A = diag(λ1, λ2). Since the eigenvalues are negative, the direction on the orbits is to the 
origin (see the left panel in the figure below). Q: Do you know what to change on the figure to present a 

phase portrait for λ1 = λ2 > 0?  
Up till now we discussed only diagonal matrix A = diag(λ1, λ2), where λ1 and λ2 are real numbers. It turns out 

that not much changes if we consider a general matrix A with two real eigenvalues. Consider two examples. 
 
Example 1. Consider the system 
 

x˙ = x + 3y, 
 

y˙ = x − y, 
 
which means that we have matrix 

  
1 3 

A=
1−1 

with the eigenvalues λ1 = 2 and λ2 = −2 (cf. our very first example of the saddle point) and the corresponding 

eigenvectors V1 = (3, 1)⊤ and V2 = (−1, 1)⊤. Hence the general solution to our problem is given by 
y(t)  1  1 

x(t) = C1 3 e2t + C2 
−1

  e−2t. 
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Figure 3: Left: Node. The case λ1 = λ2 < 0. The first eigenvector corresponds to x-axis, and the second one 

corresponds to y-axis. Right: Saddle. The case λ1 > 0 > λ2. Here the eigenvector directions do not coincides 
with the axes 

 

The analysis of the general solution shows that on the characteristic direction corresponding to V1 the 

orbits point from the origin (because λ1 = 2 > 0) and on the line with the direction V2 the orbits point to the 

origin (because λ2 = −2 < 0). The rest of the orbits do not approach the origin either for t → ∞ or for t → −∞, 
and can be plotted by continuity (see the right panel in the figure above).  

So what is exactly different from the first example in this lecture, when we considered the diagonal 
matrix? Not much actually. You can see that the resulting picture in this example can be obtained from the 
figure of the first considered case by some stretching and rotation (without any tear!). It is true in general: If 

the eigenvalues of a general matrix A2 are real and have opposite sign, then the origin is a saddle. To plot it 

you first need to plot two lines with the directions corresponding to the eigenvectors, put arrows to the origin 
on the line which corresponds to the negative eigenvalue, and put the arrows from the origin on the line 
corresponding to the positive eigenvalue. The rest of the orbits are plotted by continuity and remembering 
that the orbits cannot intersect. 
 
Example 2. Consider 
 

x˙ = −y, 
 

y˙ = 8x − 6y, 
 

hence our eigenvalues are −2, −4 with the eigenvectors (1, 2)
⊤

, (1, 4)
⊤

. Because both eigenvalues are negative, 

we know that all the orbits approach the origin when t → ∞. Again, the only subtle thing here is to decide along 

which direction the orbits tend to the origin. Since we have that λ2 < λ1 < 0 then for t → ∞ λ1 is more important, 

hence the orbits will be parallel to V1 when the orbit is close to the origin. For t → −∞, far from the origin, λ2 

becomes dominant, and therefore the orbits will be parallel to V2 (see the figure, left panel).  

Therefore, for any matrix with two real eigenvalues λ1 and λ2 with two distinct eigenvectors, we have the 

equilibrium point at the origin, which is called node. This point attracts orbits (in the sense that the direction 
on the orbits points to the origin) if eigenvalues are negative and repels them if eigenvalues are positive. To 
determine the direction along which the orbits approach the origin, you need to look for the eigenvector that 
corresponds to the eigenvalue that is closer to zero. Contrary, to see the behavior of the orbits far from the 
origin, we need to look for the direction of the eigenvector corresponding to the eigenvalue that is further 
from zero. 
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Figure 4: Left: Node. The case λ2 < λ1 < 0. Here the eigenvector directions do not coincides with the axes. 

Right: The case of equal eigenvalues with only one eigenvector 
 

 
To conclude the discussion of the case when the matrix has real eigenvalues, recall that it is possible to 

have equal eigenvalues with only one eigenvector. Consider such a case with  
A =  0 λ , 
  λ 1  

 

 

which has eigenvalue λ multiplicity 2 with the eigenvector V = (1, 0)⊤. In this case we have only one charac-
teristic direction, and the orbits approach the origin along it. Moreover, the direction on the orbits from the 
origin if λ > 0 and to the origin is λ < 0 (see figure, right panel for an example).  

Now we switch to the case when the eigenvalues are not real.  
Consider the system 

 

x˙ = ax − by,  
y˙ = bx + ay, 

 

for some constants a and b. Hence we have the matrix 
a b 

A =  
a 

−b  . 
 
We can analyze this case exactly as before, by finding the eigenvalues and eigenvectors (for example, the 

eigenvalues are λ1,2 = a ± ib). However, there is a simple way to figure out the behavior of the orbits. Multiply 
the second equation by i and add them, after some simplifications we will find that for z = x + iy it is true that: 
 

z˙ = λz, λ = a + ib. 
 

Now I use the polar form of a complex number z = ρeIθ, from which (fill in the details) 
˙ 

ρ˙ = aρ, θ = b, 
 

from which we find 

ρ(t) = C1eat, θ(t) = bt + C2, 
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for the polar coordinates ρ and θ. To see how exactly the orbits look like, assume that a > 0 and b > 0. 
Therefore, we find that ρ → ∞ as t → ∞ and ρ → 0 as t → −∞. For b positive it means that the polar angle 
changes in the positive direction, which is counterclockwise. Considering superposition of these two 
movements, we find that all the orbits (safe for the equilibrium point at the origin) are spiral, which the 
direction on them from the origin. An example for the same matrix with a < 0 and b > 0 is given on the right 
panel in the same figure. An equilibrium with such structure of orbits is called focus or spiral.  
 
 
 
 
 
 
 
 

 

y 

y 

 
 
 
 
 
 
 

 

x x 
 

Figure 5: Left: Focus. a > 0, b > 0. Right: Focus. a < 0, b > 0 
 

The general case is when the matrix has two complex conjugate eigenvalues λ1,2 = a ± b. By the sign of 
a we know the direction on the orbits: If a > 0 then the direction is from the origin, and if a < 0 then the 
direction towards the origin. However, the subtle thing here is to determine whether the rotation occurs 
clockwise or counterclockwise. To make sure that you find the correct direction, it is useful to take any point 

(x, y) = (0, 0) and find the direction at this point (this direction is given be the vector (a11x + a12y, a21x + 

a22y)). If you know whether the origin attracts or repels the orbits and one point with the precise direction, it 
becomes clear what is the whole picture on the phase plane.  

As an example, and to make the discussion complete, consider the linear system with the matrix 

1 0  

A =  
0 

−3 ,  
√  

with the eigenvalues λ1,2 = ±i 3. Since a = 0 we find that the orbits neither approach nor leave the origin. 
Actually, it can be shown that all the orbits in this case are ellipses. To infer the direction of rotation, pick a 
point, e.g., (x, y) = (1, 0). At this point we find the vector (0, 1)⊤, which points in the counterclockwise 
direction, hence the orbits look like ellipses with the counterclockwise directions on them (see the figure). An 
equilibrium with such phase portrait is called center. 

 

 Summary 
 
In the previous section we found that it is possible to have the phase portrait around the origin that belongs 
to one of the following types: 
 

• saddle (two real eigenvalues of opposite sign); 
 

• node (two real eigenvalues of the same sign); 
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Figure 6: Center, the eigenvalues are purely imaginary 

 

• degenerate node (one eigenvalue of multiplicity two with only one eigenvector); 
 

• focus (two complex conjugate eigenvalues, moreover, Re λ = 0); 
 

• center (two imaginary eigenvalues, Re λ = 0). 
 
However, the analysis was mostly based on three types of matrices: 

0   λ2 0  λ b   a 

λ1 0 , λ  1  , a −b  . 
 
To state why it is enough to consider only these three matrices, I will need the following 
 

Definition 3. Matrices A, B ∈ Mn(R) are called similar is there exists an invertible matrix S, such that 
 

A = S−1BS. 
 

Similar matrices share a lot of properties. For example, they have the same eigenvalues (can you prove it?).  
The main fact is the next theorem, which I state without proof. 
 
Theorem 4. Any 2 × 2 matrix is similar to one of the three matrices above. 
 

As an important corollary we obtain that for any matrix A ∈ M2(R) such that det A = 0, the only possible 
phase portraits are given in the previous section. 

 

 Stability of the origin 
 
Having at our disposable all the possible phase portraits of linear planar systems of ODE makes it very 
intuitively clear what it means to have the origin stable. 
 
Definition 5. The origin of the linear system 
 

x˙ = a11x + a12y, 

y˙ = a22x + a22y, 
 
with det A = 0 is called 
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• Lyapunov stable, if any orbit, starting close enough to the origin, stays close to the origin for all positive 
t; 

 
• asymptotically stable, if any orbit, starting close enough to the origin, is 1) Lyapunov stable, and 2) 

tends to the origin as t → ∞; 

• unstable, if there exits an orbit starting close enough to the origin that leaves a small neighborhood of 
the origin for some positive t. 

 
Using this definition we find that 

 
• saddles are always unstable, since it is possible to find orbits close to the origin that eventually leave 

any neighborhood of the origin; 
 

• nodes can be either asymptotically stable (this requires that both eigenvalues are negative) or unstable 
(both eigenvalues are positive); 

 

• foci can be either asymptotically stable (if Re λ1,2 < 0) or unstable (Re λ1,2 > 0); 
 

• center is Lyapunov stable, but not asymptotically stable, since the orbits do not approach the origin. 

Putting everything together, we obtain a very important fact that says that 
 
Theorem 6. The origin of the linear planar system with the matrix A such that det A = 0, is stable if for all the 

eigenvalues Re λ ≤ 0 and unstable otherwise. Moreover, it is asymptotically stable if Re λ1,2 < 0. 
 

Since there is only one equilibrium in the linear system, it is often said that the system is stable or asymp-
totically stable, meaning that the origin is stable or asymptotically stable.  

It is convenient to summarize all the information about the linear planar systems using two parameters:  
trace and determinant of matrix A. For an arbitrary matrix A the characteristic polynomial has the form 
 

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = λ2 − tr A λ + det A, 
 

where I used the notation tr A := a11 + a22 for the trace of matrix A, which is given by the sum of the 

elements on the main diagonal. Therefore, the eigenvalues can be found as 
 

λ1,2 = tr A ± 
p 

(tr A)2 − 4 det A . 
 2  

For example, if tr A > 0, det A > 0, and = (tr A)2 − 4 det A > 0 then we obtain that there are two real  
eigenvalues of the same sign, which means that in this parameter region we have unstable node. 
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Figure 7: Parametric portrait of linear planar systems. There are six domains here, with the boundaries det A 

= 0, tr A = 0 and det A = (tr A)2/4. Note that on the line tr A = 0 when det A > 0 we have centers, and if det A 

< 0 we still have saddles. On the line det A = (tr A)2/4 we have two equal eigenvalues, and hence 
degenerate nodes 
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Method of isoclines:-  Isoclines are often used as a graphical method of solving ordinary differential 

equations. In an equation of the form y' = f(x,y), the isoclines are lines in the (x, y) plane obtained by 

setting f(x,y) equal to a constant.  

 

Given a family of curves, assumed to be differentiable, an isocline for that family is formed by the set of 
points at which some member of the family attains a given slope. The word comes from 
the Greek words ἴσος (isos), meaning "same", and the κλίνειν, meaning "make to slope". Generally, an 
isocline will itself have the shape of a curve or the union of a small number of curves. 

Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation 
of the form y' = f(x,y), the isoclines are lines in the (x, y) plane obtained by setting f(x,y) equal to a 
constant. This gives a series of lines (for different constants) along which the solution curves have the 
same gradient. By calculating this gradient for each isocline, the slope field can be visualised; making it 
relatively easy to sketch approximate solution curves; as in fig. 

 

 

https://en.wiktionary.org/wiki/%E1%BC%B4%CF%83%CE%BF%CF%82
https://en.wiktionary.org/wiki/%CE%BA%CE%BB%CE%AF%CE%BD%CE%B5%CE%B9%CE%BD


Limit cycle:-  In mathematics, in the study of dynamical systems with two-dimensional phase space, 

a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory 

spirals into it either as time approaches infinity or as time approaches negative infinity.  

Stable limit cycle 

Stable limit cycle with van der pall oscillator 

In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit 

cycle is a closed trajectory in phase space having the property that at least one other trajectory 

spirals into it either as time approaches infinity or as time approaches negative infinity. Such 

behavior is exhibited in some nonlinear systems. Limit cycles have been used to model the behavior 

of a great many real world oscillatory systems. The study of limit cycles was initiated by Henri 

Poincaré. 

Stable, Unstable and semi stable limit cycles:- In the case where all the neighbouring trajectories 
approach the limit cycle as time approaches infinity, it is called a stable or attractive limit cycle (ω-limit 
cycle). If instead all neighbouring trajectories approach it as time approaches negative infinity, then it is 
an unstable limit cycle (α-limit cycle). If there is a neighbouring trajectory which spirals into the limit 
cycle as time approaches infinity, and another one which spirals into it as time approaches negative 
infinity, then it is a semi-stable limit cycle. There are also limit cycles which are neither stable, unstable 
nor semi-stable: for instance, a neighboring trajectory may approach the limit cycle from the outside, 
but the inside of the limit cycle is approached by a family of other cycles (which wouldn't be limit cycles). 

Stable limit cycles are examples of attractors. They imply self-sustained oscillations: the closed trajectory 
describes perfect periodic behavior of the system, and any small perturbation from this closed trajectory 
causes the system to return to it, making the system stick to the limit cycle. 



 

 

Examples of limit cycles branching from fixpoints near Hopf bifurcation. Trajectories in red, stable 
structures in dark blue, unstable structures in light blue. The parameter choice determines the 
occurrence and stability of limit cycles. 

 



Singular points:-  Singular Point. A singular point of an algebraic curve is a point where the curve has 

"nasty" behavior such as a cusp or a point of self-intersection (when the underlying field is taken as the 

reals). More formally, a point on a curve is singular if the and partial derivatives of are both zero at 

the point . 

In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a 

parameter. The precise definition of a singular point depends on the type of curve being studied. 

Algebraic curves in the plane may be defined as the set of points (x, y) satisfying an equation of the 

form f(x, y)=0, where f is a polynomial function f:R2→R. If f is expanded as 

f = a+bx+by+cx+………………….. 

b0=df/dx 

b1=df/dy 

If the origin (0, 0) is on the curve then a0=0. If b1≠0 then the implicit function theorem guarantees there 
is a smooth function h so that the curve has the form y=h(x) near the origin. Similarly, if b0≠0 then there 
is a smooth function k so that the curve has the form x=k(y) near the origin. In either case, there is a 
smooth map from R to the plane which defines the curve in the neighborhood of the origin. Note that at 
the origin. 

f (x,y) = df/dx = df/dy = 0 

Regular points:-  Assume the curve passes through the origin and write y=mx. Then f can be written 

 

f = ( b0+mb1 )x + ( c0+2mc1 )+………………………………. 

If b0+mb1 is not 0 then f=0 has a solution of multiplicity 1 at x=0 and the origin is a point of single contact 
with line y=mx. If b0+mb1=0 then f=0 has a solution of multiplicity 2 or higher and the line y=mx, 
or b0x+b1y=0, is tangent to the curve. In this case, if c0+2mc1+c2m2 is not 0 then the curve has a point of 
double contact with y=mx. If the coefficient of x2, c0+2mc1+c2m2, is 0 but the coefficient of x3 is not then 
the origin is a point of inflection of the curve. If the coefficients of x2 and x3 are both 0 then the origin is 
called point of undulation of the curve. This analysis can be applied to any point on the curve by 
translating the coordinate axes so that the origin is at the given point. 

 

https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Smooth_function
https://en.wikipedia.org/wiki/Plane_algebraic_curve
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Implicit_function_theorem
https://en.wikipedia.org/wiki/Inflection_point


 the left curve acquires an acnode at the origin, which is an isolated point in the plane. The central curve, 
the cardioid, has a cusp at the origin. The right curve has a crunode at the origin and the curve crosses 
itself to form a loop. 

Some of the possible singularities are:- 

An isolated point, acnode 

Two point crossing, crunode 

A cusp, spinode 

A tacnode 

A rhamhoid cusp 

 Then amongst singular points, an important distinction is made between a regular singular point, 
where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular 
singular point, where the full solution set requires functions with higher growth rates. This distinction 
occurs, for example, between the hypergeometric equation, with three regular singular points, and 
the Bessel equation which is in a sense a limiting case, but where the analytic properties are 
substantially different.  

  

 

 

https://en.wikipedia.org/wiki/Cardioid
https://en.wikipedia.org/wiki/Hypergeometric_equation
https://en.wikipedia.org/wiki/Bessel_equation
https://en.wikipedia.org/wiki/Limiting_case_(mathematics)


Stability of non linear system:-  The behavior of a nonlinear system is described in mathematics by 
a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or 
the unknown functions in the case of differential equations) appear as variables of a polynomial of 
degree higher than one or in the argument of a function which is not a polynomial of degree one. In 
other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as 
a linear combination of the unknown variables or functions that appear in them. Systems can be defined 
as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a 
differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if 
nonlinear in terms of the other variables appearing in it. 

As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated 
by linear equations (linearization). This works well up to some accuracy and some range for the input 
values, but some interesting phenomena such as solitons, chaos, and singularities are hidden by 
linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to 
be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may 
resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen 
to be chaotic, where simple changes in one part of the system produce complex effects throughout. This 
nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current 
technology. 

 stability theory addresses the stability of solutions of differential equations and of trajectories 
of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is 
a stable partial differential equation because small perturbations of initial data lead to small variations 
in temperature at a later time as a result of the maximum principle. In partial differential equations one 
may measure the distances between functions using Lp norms or the sup norm, while in differential 
geometry one may measure the distance between spaces using the Gromov–Hausdorff distance. 

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a small 
enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various criteria have 
been developed to prove stability or instability of an orbit. Under favorable circumstances, the question 
may be reduced to a well-studied problem involving eigenvalues of matrices. A more general method 
involves Lyapunov functions. In practice, any one of a number of different stability criteria are applied. 

Many parts of the qualitative theory of differential equations and dynamical systems deal with 
asymptotic properties of solutions and the trajectories—what happens with the system after a long 
period of time. The simplest kind of behavior is exhibited by equilibrium points, or fixed points, and 
by periodic orbits. If a particular orbit is well understood, it is natural to ask next whether a small change 
in the initial condition will lead to similar behavior. 

Stability means that the trajectories do not change too much under small perturbations. The opposite 
situation, where a nearby orbit is getting repelled from the given orbit, is also of interest. In general, 
perturbing the initial state in some directions results in the trajectory asymptotically approaching the 
given one and in other directions to the trajectory getting away from it. There may also be directions for 
which the behavior of the perturbed orbit is more complicated (neither converging nor escaping 
completely), and then stability theory does not give sufficient information about the dynamics. 

The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable 
equilibrium state then a small push will result in a localized motion, for example, small oscillations as in 
the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically 
stable. On the other hand, for an unstable equilibrium, such as a ball resting on a top of a hill, certain 

https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Linearization
https://en.wikipedia.org/wiki/Soliton
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Mathematical_singularity
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Maximum_principle
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Gromov%E2%80%93Hausdorff_convergence
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Lyapunov_stability
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Lyapunov_function
https://en.wikipedia.org/wiki/Stability_criterion
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Damping


small pushes will result in a motion with a large amplitude that may or may not converge to the original 
state. 

There are useful tests of stability for the case of a linear system. Stability of a nonlinear system can often 
be inferred from the stability of its linearization. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Linearization
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Describing function:-  

In control systems theory, the describing function (DF) method, developed 

by NikolayMitrofanovichKrylov and NikolayBogoliubov in the 1930s, and extended by Ralph 

Kochenburgeris an approximate procedure for analyzing certain nonlinear control problems. It is based 

on quasi-linearization, which is the approximation of the non-linear system under investigation by 

a linear time-invariant (LTI) transfer function that depends on the amplitude of the input waveform. By 

definition, a transfer function of a true LTI system cannot depend on the amplitude of the input function 

because an LTI system is linear. Thus, this dependence on amplitude generates a family of linear systems 

that are combined in an attempt to capture salient features of the non-linear system behavior. The 

describing function is one of the few widely applicable methods for designing nonlinear systems, and is 

very widely used as a standard mathematical tool for analyzing limit cycles in closed-loop controllers, 

such as industrial process controls, servomechanisms, and electronic oscillators. 

 

Non linear system in the state of harmonic balance 

Consider feedback around a discontinuous (but piecewise continuous) nonlinearity (e.g., an amplifier 

with saturation, or an element with deadband effects) cascaded with a slow stable linear system. The 

continuous region in which the feedback is presented to the nonlinearity depends on the amplitude of 

the output of the linear system. As the linear system's output amplitude decays, the nonlinearity may 

move into a different continuous region. This switching from one continuous region to another can 

generate periodic oscillations. The describing function method attempts to predict characteristics of 

those oscillations (e.g., their fundamental frequency) by assuming that the slow system acts like a low-

pass or bandpass filter that concentrates all energy around a single frequency. Even if the output 

waveform has several modes, the method can still provide intuition about properties like frequency and 

possibly amplitude; in this case, the describing function method can be thought of as describing 

the sliding mode of the feedback system. 

Other types of describing functions that have been used are DFs for level inputs and for Gaussian noise 

inputs. Although not a complete description of the system, the DFs often suffice to answer specific 

questions about control and stability. DF methods are best for analyzing systems with relatively weak 

nonlinearities. In addition the higher order sinusoidal input describing functions (HOSIDF), describe the 

response of a class of nonlinear systems at harmonics of the input frequency of a sinusoidal input. The 

HOSIDFs are an extension of the SIDF for systems where the nonlinearities are significant in the 

response. 

https://en.wikipedia.org/wiki/Control_systems
https://en.wikipedia.org/wiki/Nikolay_Mitrofanovich_Krylov
https://en.wikipedia.org/wiki/Nikolay_Bogoliubov
https://en.wikipedia.org/wiki/Nonlinear_control
https://en.wikipedia.org/wiki/LTI_system
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Linear_system
https://en.wikipedia.org/wiki/Limit_cycle
https://en.wikipedia.org/wiki/Closed-loop_controller
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Deadband
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Low-pass
https://en.wikipedia.org/wiki/Low-pass
https://en.wikipedia.org/wiki/Bandpass
https://en.wikipedia.org/wiki/Sliding_mode_control
https://en.wikipedia.org/wiki/Higher_order_sinusoidal_input_describing_function


Although the describing function method can produce reasonably accurate results for a wide class of 

systems, it can fail badly for others. For example, the method can fail if the system emphasizes higher 

harmonics of the nonlinearity. Such examples have been presented by Tzypkin for bang–bang systems. A 

fairly similar example is a closed-loop oscillator consisting of a non-inverting Schmitt trigger followed by 

an inverting integrator that feeds back its output to the Schmitt trigger's input. The output of the 

Schmitt trigger is going to be a square waveform, while that of the integrator (following it) is going to 

have a triangle waveform with peaks coinciding with the transitions in the square wave. Each of these 

two oscillator stages lags the signal exactly by 90 degrees (relative to its input). If one were to perform 

DF analysis on this circuit, the triangle wave at the Schmitt trigger's input would be replaced by its 

fundamental (sine wave), which passing through the trigger would cause a phase shift of less than 90 

degrees (because the sine wave would trigger it sooner than the triangle wave does) so the system 

would appear not to oscillate in the same (simple) way. 

Limitations of Describing function:- 

1. The describing-function method of analysis fails to predict the existence of a limit cycle when 

applied to a relay control system for a nuclear reactor. 

2. This is demonstrated by a direct solution of the system differential equations and by experiment 

on the Universities' Research Reactor. 

3. It involves complex computations. 

4. This process waste a lot of time. 

5. It causes various types of non linearities in the system. 

6. Produces various errors. 

Use of describing function for stability:-  

The describing function is an approximate procedure for analyzing certain nonlinear control problems in 

control engineering. To start, let us first recall the basic definition of a linear control system. Linear 

control systems are those where the principle of superposition (if the two inputs are applied 

simultaneously, then the output will be the sum of two outputs) is applicable. 

Analysis of different nonlinear controls system is very difficult due to their nonlinear behavior. We 

cannot use conventional analysis methods such as the Nyquist stability criterion or pole-zero method in 

order to analyze these nonlinear systems, as these methods are restricted to linear systems. 

Describing function for Ideal Relay:- 

We have the characteristic curve for ideal relay as shown in the given figure. 

Let us take input function as:  

 

Now from the curve we can define the output as 

https://en.wikipedia.org/wiki/Bang%E2%80%93bang_control
https://en.wikipedia.org/wiki/Schmitt_trigger
https://en.wikipedia.org/wiki/Integrator
https://en.wikipedia.org/wiki/Square_wave
https://en.wikipedia.org/wiki/Triangle_wave
https://www.electrical4u.com/different-types-non-linearities-in-control-system/
https://www.electrical4u.com/control-engineering-historical-review-and-types-of-control-engineering/
https://www.electrical4u.com/superposition-theorem/
https://www.electrical4u.com/nyquist-stability-criterion/


 

 

The output periodic function has odd symmetry : 

 

Let us first calculate Fourier series constant A1. 

 

On substituting the value of the output in the above equation and integrating the function from 0 to 2π 

we have the value of the constant A1 as zero. 

Similarly we can calculate the value of Fourier constant B1 for the given output and the value of B1 can 

be calculated as 

 



On substituting the value of the output in the above equation y(t) = Y we have the value of the constant 

B1 

 

And the phase angle for the describing function can be calculated as 

 

Thus the describing function for an ideal relay is 

 

 

 

Describing function for Relay ( Relay with Dead Zone ):- 

 



We have the characteristic curve for real realy as shown in the given figure. If X is less than dead zone Δ, 

then the relay produces no output; the first harmonic component of Fourier series is of course zero and 

describing function is also zero. If X > Δ the relay produces the output. 

Let us take input function as: 

 

Now from the curve we can define the output as: 

 

 

The output periodic function has odd symmetry : 

 

Let us first calculate Fourier series constant A1. 

 

On substituting the value of the output in the above equation and integrating the function from 0 to 2π 

we have the value of the constant A1 as zero. 

Similarly we can calculate the value of Fourier constant B for the given output and the value of B can be 

calculated as 

 

Due to the symmetry of y, the coefficient B1 can be calculated as follows, 

https://www.electrical4u.com/fourier-series-and-fourier-transform/
https://www.electrical4u.com/fourier-series-and-fourier-transform/


 

Therefore, the describing function is 

 

Describing function for Backlash Non Linearity:- 

We have the characteristic curve for backlash as shown in the given figure. Let us take input function as 

 

 

Now from the curve we can define the output as 



 

 

Let us first calculate Fourier series constant A1. 

 

On substituting the value of the output in the above equation and integrating the function from zero to 

2π we have the value of the constant A1 as 

 

 

Similarly we can calculate the value of Fourier constant B for the given output and the value of B1 can be 

calculated as 

 

On substituting the value of the output in the above equation and integrating the function from zero to 

pi we have the value of the constant B1 as 

 

We can easily calculate the describing function of backlash from below equation 

 

Describing function for Saturation Non linearity:-  

https://www.electrical4u.com/fourier-series-and-fourier-transform/


We have the characteristic curve for saturation as shown in the given figure. 

 

Let us take input function as 

 

Now from the curve we can define the output as: 

 

Let us first calculate Fourier series constant A1. 

 

On substituting the value of the output in the above equation and integrating the function from 0 to 2π 

we have the value of the constant A1 as zero. 

Similarly we can calculate the value of Fourier constant B1 for the given output and the value of B1 can 

be calculated as, 

https://www.electrical4u.com/fourier-series-and-fourier-transform/


 

 

 

The phase angle for the describing function can be calculated as 

 

Thus the describing function for saturation is 

 

Friction Non linearity:-  



Anything which opposes the relative motion of the body is called friction. It is a kind of non linearity 

present in the system. The common example in an electric motor in which we find coulomb friction drag 

due to the rubbing contact between the brushes and the commutator. 

 

Friction may be of three types and they are written below: 

1. Static Friction : In simple words, the static friction acts on the body when the body is at rest. 

2. Dynamic Friction : Dynamic friction acts on the body when there is a relative motion between 
the surface and the body. 

3. Limiting Friction : It is defined as the maximum value of limiting friction that acts on the body 

when it is at rest. 

Dynamic friction can also be classified as (a) Sliding friction (b) Rolling friction. Sliding friction acts when 

two bodies slides over each other while rolling acts when the bodies rolls over another body. 

In mechanical system we have two types of friction namely (a) Viscous friction (b) Static friction. 

Liapunov Function and 2nd method:- 

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that 
may be used to prove the stability of an equilibrium of an ODE. Named after 
the Russian mathematician AleksandrMikhailovichLyapunov, Lyapunov functions (also called the 
Lyapunov’s second method for stability) are important to stability theory of dynamical 
systemsand control theory. A similar concept appears in the theory of general state space Markov 
chains, usually under the name Foster–Lyapunov functions. 

For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition 
for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in 
many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions 
suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov 
functions for linear systems; and conservation laws can often be used to construct Lyapunov functions 
for physical systems 
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Various types of stability may be discussed for the solutions of differential equations or difference 
equations describing dynamical systems. The most important type is that concerning the stability of 
solutions near to a point of equilibrium. This may be discussed by the theory of AleksandrLyapunov. In 
simple terms, if the solutions that start out near an equilibrium point  stay near forever, 
then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out 
near  converge to  then is asymptotically stable. The notion of exponential stability guarantees a 
minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov 
stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, 
which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state 
stability (ISS) applies Lyapunov notions to systems with inputs.  

Lyapunov, in his original 1892 work, proposed two methods for demonstrating stability. The first 
method developed the solution in a series which was then proved convergent within limits. The second 
method, which is now referred to as the Lyapunov stability criterion or the Direct Method, makes use of 
a Lyapunov function V(x) which has an analogy to the potential function of classical dynamics. It is 
introduced as follows for a system, x. = f(x)having a point of equilibrium at x=0, then 

V(x)=0, if and only if x=0 

V(x)>0, if and only if x is not equal to 0 

Then V(x) is called a Lyapunov function and the system is stable in the sense of Lyapunov (Note that  is 
required; otherwise for example would "prove" that is locally stable). An additional condition called 
"properness" or "radial unboundedness" is required in order to conclude global stability. Global 
asymptotic stability (GAS) follows similarly. 

It is easier to visualize this method of analysis by thinking of a physical system (e.g. vibrating spring and 
mass) and considering the energy of such a system. If the system loses energy over time and the energy 
is never restored then eventually the system must grind to a stop and reach some final resting state. 
This final state is called the attractor. However, finding a function that gives the precise energy of a 
physical system can be difficult, and for abstract mathematical systems, economic systems or biological 
systems, the concept of energy may not be applicable. 

Lyapunov's realization was that stability can be proven without requiring knowledge of the true physical 
energy, provided a Lyapunov function can be found to satisfy the above constraints. 
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Optimal Control System:- Optimal control theory is a branch of applied mathematics that deals with 

finding a control law for a dynamical system over a period of time such that an objective function is 

optimized. It has numerous applications in both science and engineering. For example, the dynamical 

system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might 

be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a 

nation's economy, with the objective to minimize unemployment,  the controls in this case could 

be fiscal and monetary policy. 

Optimal control is an extension of the calculus of variations, and is a mathematical optimization method 

for deriving control policies. The method is largely due to the work of Lev Pontryagin and Richard 

Bellman in the 1950s, after contributions to calculus of variations by Edward J. McShane. Optimal 

control can be seen as a control strategy in control theory. 

Optimal control deals with the problem of finding a control law for a given system such that a 

certain optimality criterion is achieved. A control problem includes a cost functional that is a function of 

state and control variables. An optimal control is a set of differential equations describing the paths of 

the control variables that minimize the cost function. The optimal control can be derived 

using Pontryagin's maximum principle (a necessary condition also known as Pontryagin's minimum 

principle or simply Pontryagin's Principle), or by solving the Hamilton–Jacobi–Bellman 

equation (a sufficient condition). 

Variation Calculas:- 

The calculus of variations is a field of mathematical analysis that uses variations, which are small 

changes in functions and functionals, to find maxima and minima of functionalsmappings from a set 

of functions to the real numbers. Functionals are often expressed as definite integrals involving 

functions and their derivatives. Functions that maximize or minimize functionals may be found using 

the Euler–Lagrange equation of the calculus of variations. 

A simple example of such a problem is to find the curve of shortest length connecting two points. If 

there are no constraints, the solution is a straight line between the points. However, if the curve is 

constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions 

may exist. Such solutions are known as geodesics. A related problem is posed by Fermat's principle: light 

follows the path of shortest optical length connecting two points, where the optical length depends 

upon the material of the medium. One corresponding concept in mechanics is the principle of 

least/stationary action. 

Many important problems involve functions of several variables. Solutions of boundary value 

problems for the Laplace equation satisfy the Dirichlet principle. Plateau's problem requires finding a 

surface of minimal area that spans a given contour in space, a solution can often be found by dipping a 

frame in a solution of soap suds. Although such experiments are relatively easy to perform, their 

mathematical interpretation is far from simple: there may be more than one locally minimizing surface, 

and they may have non-trivial topology. 
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Functionals of a single function:- 

 

The arc length functional has as its domain the vector space of rectifiable curves  and outputs a real scalar. 

This is an example of a non-linear functional. 

The Riemann integral is a linear functional on the vector space of 

Riemann-integrable functions from a to b. . 

This article is mainly concerned with the second concept, which arose in the early 18th century as part 

of the calculus of variations. The first concept, which is more modern and abstract, is discussed in detail 

in a separate article, under the name linear form. The third concept is detailed in the article on higher-

order functions. 

Eular Lagrange Equation:- 

In the calculus of variations, the Euler equationis a second-order partial differential equation whose 

solutions are the functions for which a given functional is stationary. It was developed by Swiss 

mathematician Leonhard Euler and French mathematician Joseph-Louis Lagrange in the 1750s. 

Because a differentiable functional is stationary at its local extrema, the Euler–Lagrange equation is 

useful for solving optimization problems in which, given some functional, one seeks the function 

minimizing or maximizing it. This is analogous to Fermat's theorem in calculus, stating that at any point 

where a differentiable function attains a local extremum its derivative is zero. 

In Lagrangian mechanics, according to Hamilton's principle of stationary action, the evolution of a 

physical system is described by the solutions to the Euler equation for the action of the system. In this 

context Euler equations are usually called Lagrange equations. In classical mechanics, it is equivalent 

to Newton's laws of motion, but it has the advantage that it takes the same form in any system 
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of generalized coordinates, and it is better suited to generalizations. In classical field theory there is 

an analogous equation to calculate the dynamics of a field. 

The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their 

studies of the tautochrone problem. This is the problem of determining a curve on which a weighted 

particle will fall to a fixed point in a fixed amount of time, independent of the starting point. 

Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's 

method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Their 

correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766. 

The Euler–Lagrange equation is an equation satisfied by a function q of a real argument t, which is a 
stationary point of the functional. 

L(t,q(t), dq/dt)-dL/dt(t,q(t), dq/dt ) = 0,  for i=1……………n 

 

  .  

 

Figure: Different paths between points  and  . 

In order to find the shortest path between points  and  , we need to minimize 

the functional  with respect to small variations in the function  , subject to the 

constraint that the end points,  and  , remain fixed.  
 

Consider a general functional of the form 
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Integrating the second term in the integrand of the previous equation by parts, we get 

 

 

 

 

 

 

 

 



 

 

 

Of course,  is the equation of a straight-line. Thus, the shortest distance between two 
fixed points in a plane is indeed a straight-line. 

Variable End point problem:- 

So far we have been considering the Basic Calculus of Variations Problem, in which the curves have both 
their endpoints fixed by the boundary conditions . Accordingly, the class of admissible perturbations is 
restricted to those vanishing at the endpoints. This fact, reflected in , was explicitly used in the 
derivation of the Euler-Lagrange equation . Indeed, the first-order necessary condition which serves as 
the basis for the Euler-Lagrange equation--need only hold for admissible perturbations. 

If we change the boundary conditions for the curves of interest, then the class of admissible 
perturbations will also change, and in general the necessary condition for optimality will be different.  

 

 



 

We can think of  as replacing the boundary condition  . Recall that we want to have two 
boundary conditions to uniquely specify an extremal. Comparing with the Basic Calculus of Variations 
Problem, here we have only one endpoint fixed a priori, but on the other hand we have a richer 
perturbation family which allows us to obtain one extra condition. 

Transversality Conditions:-  

Transversality condition. In optimal control theory, a transversality condition is a 
boundary condition for the terminal values of the costate variables. They are one of the 
necessary conditions for optimality in finite-horizon optimal control problems without an endpoint 
constraint on the state variable. 

 

A necessary condition for optimality in variational problems with variable end-points. The arbitrary 
constants on which the solution of the Euler equation depends are determined by means of the 
tranversality condition. The transversality condition is a necessary condition for the vanishing of the first 
variation of a functional. 

For the simplest problem in variational calculus with variable end-points. 

https://www.encyclopediaofmath.org/index.php/Euler_equation


 

in which the point 

 

is not fixed but can belong to a certain manifold, the transversality condition can be written in the 
form of the relation 

 

which must be satisfied for any values of the tangent differentials , , ,  of the 
boundary condition manifold. 

If the left- and right-hand end-points of the extremal can be displaced along prescribed 

curves  and , then since 

 

and the variations of  and  are independent, (1) implies 

 

If the equations of the curves along which the left- and right-hand end-points are displaced are 

given in implicit form,  and , then the transversality condition (1) 
can be written in the form 

 

If there are no constraints on one of the end-points, then at this end-point, by virtue of the 
independence of the respective tangent differentials  and , the transversality condition takes the 
form 

 

The above relations are called Transversality conditions. 



Limitations of calculas of variation:- 

1. To find minimizers. 
2. Necessary conditions which have to satisfy minimizers. 
3. Find solutions ( externals ) which satisfy the necessary conditions. 
4. Sufficients conditions which guarantee that such solutions are minimizers. 
5. Qualitative properties of minimizers, like regularities properties. 
6. How depend minimizers on parameters. 
7. Dtability of extremals depending on parameters. 

Pontriyagin’sMinimun Principle:- 

Pontriyagin’s minimum principle is used in optimal control theory to find the best possible control for 
taking a dynamical system from one state to another, specially in the presence of constraints for the 
state or input controls. It states that it is necessary for any optimal control along with the optimal state 
trajectory to solve the so called Hamitonian system, which is a two point boundry value problem, plus a 
maximum condition of the Hamitonian. These necessary conditions becomes sufficient under certain 
convexity conditions on the objective and constraints functions. 

The minimum principle was formulated by the Russian Mathematician Lev Pontryagin and his students, 
and its initial application was to maximization of the terminal speed of rocket. The result was derived 
using ideas from the classical calculus of variation. 
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Pontryagin’s Minimum Principle
1 

 
In this handout, we provide a derivation of the minimum principle of Pontryagin, which is a 

generalization of the Euler-Lagrange equations that also includes problems with constraints on 

the control inputs. Only a special case of the minimum principle is stated. However, this special 

case covers a large class of control problems. We consider the problem of minimizing the 

performance index given by 
 
 TF  

J = Φ(x(tF )) + F (x(t), u(t))dt (1) 
 T0  

subject to   

x˙ = f (x, u),   x(t0) = x0,   and   x(tF ) = xF . (2) 

We consider two cases: fixed final state and free final state.  

To proceed we define the Hamiltonian function H (x, u, p) as  
 

H (x, u, p) = H = F + p⊤f , 

 

where the costate vector p will be determined in the analysis to follow. 
 

We discuss the case when the final time tF is fixed. We follow the development of 

Luenberger [1, Section 11.1]. We “adjoin” to J additional terms that sum up to zero. We note 

that because the state trajectories must satisfy the equation, x˙ = f (x, u), we have 

 

f (x, u) − x˙ = 0. (3) 

 

We introduce the modified objective performance index, 
 

˜ 
 TF  

= J + 
⊤ 

(4) J p(t)  (f (x, u) − x˙) dt. 
  T0    

1 ˙ 
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     ˜ 
is the Because for any state trajectory, (3) is satisfied, for any choice of p(t) the value of J 

  ˜     

same as that of J . Therefore, we can express J as     

˜ 
TF TF     

=  Φ(x(tF )) + F (x(t), u(t)) dt + p(t) 
⊤ 

(f (x, u) − x˙) dt 
 

J   

 T
0 T0     

 TF      

 =  Φ(x(tF )) + (H (x, u, p) − p⊤x˙) dt.    (5) 
 T0      
 

Let u(t) be a nominal control strategy; it determines a corresponding state trajectory x(t). If we 

apply another control strategy, say v(t), that is “close” to u(t), then v(t) will produce a state 

trajectory close to the nominal trajectory. This new state trajectory is just a perturbed version of 

x(t) and it can be represented as 

 

x(t) + δx(t). 

 

The change in the state trajectory yields a corresponding change in the modified performance 
 

index. We represent this change as 
˜; it has the form, 
δJ 

˜ 
TF     

= Φ(x(tF ) + δx(tF )) − Φ(x(tF )) +(H (x + δx, v, p) − H (x, u, p) − p 
⊤ 

δx˙) dt. (6) δJ  

 T
0     

We evaluate the integral above. Integrating by parts gives     

 TF TF    

 p⊤δx˙ dt = p(tF )⊤δx(tF ) − p(t0)
⊤δx(t0) − p˙

⊤δx dt.   (7) 

 T0 
T

0     

Note that δx(t0) = 0 because a change in the control strategy does not change the initial state. 

Taking into account the above, we represent (6) as 
 

˜ 
=  Φ(x(tF ) + δx(tF )) − Φ(x(tF )) − p(tF ) 

⊤ 
δx(tF ) δJ  

TF 

+ (H (x + δx, v, p) − H (x, u, p) + p˙
⊤δx) dt. 

T0 

 

We next replace (Φ(x(tF ) + δx(tF )) − Φ(x(tF ))) with its first-order approximation, and add and 

subtract the term H (x, v, p) under the integral to obtain 
 

˜ 
⊤ 

=∇xΦ|T=TF   − 
p

(
t

F )    
δx

(
t

F ) δJ 
TF 

+ (H (x + δx, v, p) − H (x, v, p) + H (x, v, p) − H (x, u, p) + p˙
⊤δx) dt.  

T
0 
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Replacing (H (x + δx, v, p) − H (x, v, p)) with its first-order approximation, 
 

H (x + δx, v, p) − H (x, v, p) = 

∂H 
 

δx, ∂x 

gives           

˜ 
   ⊤      

− p(tF )    δx(tF ) 
   

δJ
   =∇xΦ|T=TF    

TF  ∂H      

+ 
  

+ p˙
⊤ δx + H (x, v, p) − H (x, u, p)   dt.  ∂x 

T0           

Selecting in the above p as the solution to the differential equation 

   ∂H      
     

+ p˙
⊤

 = 0⊤ 
    ∂x 

with the final condition           

  
p

(
t

F ) = ∇xΦ|T=TF  
, 

˜           
reduces δJ to           

˜  TF      
 

(H (x, v, p) − H (x, u, p)) dt. δJ =  

 
T

0      
          ˜ 
If the original control u(t) is optimal, then we should have δJ  ≥ 0, that is, H (x, v, p) ≥ 

H (x, u, p). We summarize our development in the following theorem. 

Theorem 1 Necessary conditions for u ∈ U  to minimize (1) subject to (2) are: 

   

p˙ = − 

∂H ⊤ 
     

, 
  

    ∂x   
 

where H = H (x, u, p) = F (x, u) + p⊤f (x, u), 
 

H (x∗, u∗, p∗) = min H (x, u, p). 
u∈U 

 

If the final state, x(tF ), is free, then in addition to the above conditions it is required that 

the following end-point condition is satisfied, 

 

p
(
t

F ) = ∇xΦ|T=TF  
. 
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The equation,         

  

p˙ = − 

∂H   ⊤   

(8) 
       

   ∂x   

is called in the literature the adjoint or costate equation.   

We illustrate the above theorem with the following well-known example. 

Example 1 We consider a controlled object modeled by   

x˙1  =0  1x1 + 0 u 

x˙2  0  0x2  1  
  =  Ax + bu    

with the performance index         
    

T
F    

  J =  dt.    
0 

 

The control is required to satisfy 
 

|u(t)| ≤ 1 

 

for all t ∈ [0, tF ]. This constraint means that the control must have magnitude no greater than 1. 

Our objective is to find admissible control that minimizes J and transfers the system from a 

given initial state x0 to the origin. 
 

We begin by finding the Hamiltonian function for the problem, 
 

H =  1 + p⊤(Ax + bu) 

=  1 +   p1    p2 0 1x1  + 0   u  

 0 0x2   1  
= 1 + p1x2 + p2u. 

 

The costate equations are 
 

  
p˙1 

  = − 
p˙2 

 

Solving the costate equations yields 

 
 
 

 
∂H 
∂X1 
 
∂H 
∂X2 

 
 
 

 

  
0 

= . 
−p1 

 

p1  = d1 and p2  = −d1t + d2, 
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where d1 and d2 are integration constants. We now find an admissible control minimizing the 

Hamiltonian, 
 

argU min H = argU min(1 + p1x2 + p2u) 
 

= argU min(p2u)   
= u(t ) = 1  if  p2  0 

  u t if p2 <  
 ()=0   = 0 

       

       
  u(t) = −1 if  p2  > 0. 
       

 
 

Hence,  

u∗(t) = −sign(p∗2) = −sign(−d1t + d2), 
 

where the signum function is defined as 
 

  1 if z > 0 

sign(z) =  0 if z = 0 
   

      

      

−1  if  z < 0. 
 

Thus, the optimal control law is piecewise constant taking the values 1 or −1. This control law 

has at most two intervals of constancy because the argument of the sign function is a linear 

function, −d1t + d2, that changes its sign at most once. This type of control is called a bang-

bang control because it switches back and forth between its extreme values. System trajectories 

for u = 1 and u = −1 are families of parabolas. Segments of the two parabolas through the origin 

form the switching curve, 
 

x1  = −
1

2 x2
2 sign(x2). 

 
 

This means that if an initial state is above the switching curve, then u = −1 is used until the 

switching curve is reached. Then, u = 1 is used to reach the origin. For an initial state below the 

switching curve, the control u = 1 is used first to reach the switching curve, and then the control 

is switched to u = −1. We implement the above control action as 
 

  1 if v < 0 

u = −sign(v) =  0 if v = 0 
   

      

      

−1  if  v > 0, 
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Figure 1: A phase-plane portrait of the time optimal closed-loop system of Example 1. 

 

where v = v(x1, x2) = x1 + 
1
2 x2

2sign(x2) = 0 is the equation describing the switching curve. We 

can use the above equation to synthesize a closed-loop system such that starting at an arbitrary 

initial state in the state plane, the trajectory will always be moving in an optimal fashion towards 

the origin. Once the origin is reached, the trajectory will stay there. A phase portrait of the 

closed-loop time optimal system is given in Figure 1. 
 
 
 
 
 
 

 

References 
 
 

[1] D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and 

Applications. John Wiley & Sons, New York, 1979. 

 
 
 
 
 

 

6 


